ELF>9@7@8 @  px HH H 888$$xxx Stdxxx Ptd000llQtdRtd 00GNUxw#$>5tA!kH!kmBE|qX T >x^13KT$?O;O|?-Uq#C/Z gP yvIl`{Ch`#i, (6F" @ H @ ~ @__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyFloat_FromDoublePyModule_AddObject_Py_dg_infinity_Py_dg_stdnanPyFloat_TypePyFloat_AsDoublePyErr_Occurrednextafter_PyArg_CheckPositionalfmodround__errno_locationlogPyNumber_Index_PyLong_SignPyLong_FromLong_Py_Dealloc_PyLong_NumBits_PyLong_RshiftPyLong_AsUnsignedLongLongPyLong_FromUnsignedLongLong_PyLong_LshiftPyNumber_AddPyNumber_FloorDividePyExc_ValueErrorPyErr_SetStringPyNumber_MultiplyPyObject_RichCompareBool_PyLong_OnePyNumber_SubtractPyBool_FromLongpowPyObject_GetIterPyIter_NextPyLong_TypePyLong_AsDoublePyMem_ReallocPyMem_MallocPyExc_MemoryErrorPyMem_FreememcpyPyExc_OverflowError__stack_chk_fail_Py_bit_lengthPyLong_FromUnsignedLongPyType_IsSubtypePyExc_DeprecationWarningPyErr_WarnExPyLong_FromDoublePyLong_AsLongAndOverflowPyErr_Format_Py_NoneStruct_PyLong_CopyPyLong_AsLongLongAndOverflowerfcerf_PyArg_UnpackKeywordsPyErr_SetFromErrnocopysignmodfPy_BuildValuelog2PyExc_TypeErrorldexp_PyLong_GCDPyNumber_Absolute_PyLong_Zerofrexpatan2_PyObject_LookupSpecialPyThreadState_Get_Py_CheckFunctionResult_PyObject_MakeTpCallPyErr_ExceptionMatchesPyErr_Clear_PyLong_FrexpPyArg_ParseTuplePyNumber_TrueDivideacosacoshasinasinhatanatanhexpm1fabssqrtPyObject_FreePyObject_MallocPyErr_NoMemorylog10PySequence_TuplePyType_ReadyPyInit_mathPyModuleDef_Initlog1plibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5GLIBC_2.14GLIBC_2.4/opt/imh-python/lib@ui ii  ui ui  : `:  "  j r0 ?8  W( `H  P z  0     ( ` h ;  p         Ј     ,( n8 @ H X  ` h Гx  # pn `  0   P  – 0=  R  @ ʖ( o8 @ ΖH oX @` Bh px  Ӗ  ` ٖ   ޖ S   P  2 o ` ( P8 @ ЕH MX ` h `ox   p~     z ]   @H      ( G8 `@ H CX ` h |x ` @ 0y `  @o ` N  @ $ Љ  *   0( 8 @ 5H PvX ` 7h qx  : < @  Pn    @     0  ( P8 `@ H pX  ` Bh x   f  Օ W @  a `  =  H @\         !( "0 $8 0@ 4H >P AX D` Fh Hp Jx K O R V X Y [ \ ^ a b c e ip x                      ( 0 8 @  H #P %X &` 'h (p )x * + , - . / 0 1 2 3 5 6 7 8 9 : ; < = ? @ B( C0 E8 G@ IH LP MX N` Ph Qp Sx T U W X Z ] _ ` b d e f g h jHH HtH5z %{ hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhO%u D%m D%e D%] D%U D%M D%E D%= D%5 D%- D%% D% D% D% D% D% D% D% D% D%ݦ D%զ D%ͦ D%Ŧ D% D% D% D% D% D% D% D% D%} D%u D%m D%e D%] D%U D%M D%E D%= D%5 D%- D%% D% D% D% D% D% D% D% D% D%ݥ D%ե D%ͥ D%ť D% D% D% D% D% D% D% D% D%} D%u D%m D%e D%] D%U D%M D%E D%= D%5 D%- D%% D% D% D% D% D% DH=I HB H9tH Ht H= H5 H)HHH?HHtHm HtfD=խ u+UH=b Ht H=^ d ]w f/vbX%ffH >kHjD$HYYXXHuf(^fff1%H jH\jf.$^H^XXHhuf(^HH1H>H;qH1ҍ4pHH5H1DHH)DI1HHHHHff.fS~HH5YHH ~dH5]ZHHxn~AH5=YHHxK1H5ZHHx)1HH5ZH{[fD[fHE H9Ft/HHf.#~{1Y~H}YF~fDuqHu}H[1HÐHš H9Ft/HHSf.}{1Y}H}YFfDuHud}H1HÐUSHHHu}H;H-3 H9otUf.}f(H{H9otC$f.|$f({f(&H[][WH{H9ouOfHֹH=3WbH1[]fDt$$H\{D$$L$H\fH(~|f(<|fTf.r fTf.s8f.f.f.fH~HG{HD$D$H(f. {zu-{l$D$H(D$f(f(T$d$T$d$f(f(\f/v3~ +|D$fTfV)|YD$df.f/v:~ {f(fWD$/DL$D\f({\$Y1\$X\[ff.H zD$fTV{f(X $HV $,HcH>\ z0zY~ {fWT$fTfV {HY\ PzyYG~ zDY yf('~ zD\ zyY/~ zwf`y\Y|y~ _zOf.H(~0zf(=yfTf.s*f.fH~HKyHD$L$f(H(Df(-tyf(f(fTf.v3H,f5xfUH*f(fT\f(fVf.f(z=u;yf/r-fff/u x!]xf/f(l$T$1 xT$\XD$f(\txoT$\wl$~xf(\ GxYff/XL$w3fTf.xL$L$"H(f(Ðf(L$~yxfTT$D$f(w\T$L$~?x\\f(kfDf(f(fW #xH(f(f.AWHAVAUATUSH(Ht_HH6H&uZH+H(1[]A\A]A^A_I.u LDH+uHE1H(L[]A\A]A^A_DHHtL`LHHD$I?LAHu fDjHD$HHuDjMHIIvIHYHI/I<IL|$DLID)HHIHIFHD$p@MLLL)HI,$IGMLLSI/I6I.>MMLl$Ht$HIL)L)HLHHD$HT$IH*LH?H! H5brH8rH+ HxH+HHu@HH\$H؍L>H)HHHHH9H([]H)A\A]HA^A_L8L(I.LHI,$5L({HDLHLLHHt1HHXHmAt&AtEu!H+H]HPH LH0 I,$HtILI"H5 H9Ft/HHf.s{11f.@HfDF1f.@@uaHu 1H1HfH H9Ft?HHCf.r{QfTAs r1f.@HffDF {r1fT sf.@<@uHuHfD1HÐH8~rf(f(=rfTf.s6f.z f/qvH8Ðq!H8ff. f(=qf(f(fTf.wdf.zuf/wqf/qf/w~f/ qf/iyq"PfDH,f=pfUH*f(fT\f(fVf.ezfDp^fTf.pD$D$"fDD$T$fTIqfVaq!H8f(f-pf(Xf/t$D$\\YpT$(^D$D$f(L$ T$(fL$ D$f/D$L$ d$T$L$ ^Jpf/YXT$\ oD$YD$~ApfTf.of.,HEYHpfD\f(\f(L$(iD$ D$L$(o^T$ ^YT$^D$Y\f(\oT$f/\ nD$T$~[o^f( fDY nD$\ oT$~oYYff(f^f(`fDY XnD$\ n5T$~n^^f(ufDAWHAVAUATUSHXdH%(H$H1HfLd$@H1MA t$t$@Hf~%fDMI,$tvImL1@ImtaHD$1f.HPHH!uHt$LH)I,$LHD$HD$LfDLfDH H5aHH811ofAWAVAUIATUHSHH(dH%(HD$1HBH'H}HDLeL;% 3HHL- L9hHH+HqHL@HHL9hHH+IUMH}QI|$51LH(@f.HmI,$1HT$dH3%(H?H([]A\A]A^A_fH@HH=<7tH}HHLZHDI,Li1IHHEHHEHI,$>L^1fHHH8Hi H5_H8DHt$L#HD$D$bHD$HHHEHL$HPHHHEHIHABMLLI.HH6ILIL9l$aH HH $H0H $IH)uH6@H(HY H5^H8DHmHHZI.LyfL$H"H H5|:HH81)fHm+H1KfDI/L.fHHEHfDIHPIHt HEHfLHIMff.fH8H H9FtkHC%^f(f.f.z:~/_-^fTf.vbf.zu$$Hf(H8V%+^f.z~^-5^% ^fTf.w1)\$ d$l$$$f(D$f(f(\$ $l$t$fTd$f.w_\f(5f1H8f$$$$Hu]~^-v]Nff(fW ^f(d$u$d$\ATUSHHHPdH%(HD$H1HLaIHHA1HD$(L Pjj9H HH!H;H- H9o@f.\D$H{H9of.i\f(IzH{HH9o&L$f.+\L$f(IH{H9oT$L$f.[L$T$pff/rf/h|$f.t$~Z\%[f(fTf.f(fTf.f(Y\fTfTf/sYfTf/4HAH1H;H- H9ofgH{d$H9otOI|$fa[f. D%H@1HT$HdH3%(HP[]A\fHuHy~ H5XH8HHu$fGFfDWfDD$L$T$HRI{16@PZKD$'L$H1ff/D1f/@Inff.AWAVAUATUSHH(dH%(HD$1Ht!HֹH=4L9H;LkhHH!L%m} L9`sHHmHeHL$IH(L9`HvI/HHpH{H}HHIHsHx1HHHmLHt$HHD$D$HD$HH/HHT$HHH9HIHH|IAMLLI/IMLHHLH$FI.L$IUI(aMjIEML9l$IH{ LH0I.I^LQMDI.uLf.H+tdHmuHE1HL$dH3 %(LmH([]A\A]A^A_fH{HHz H5TH8H+uHN@HH8H(1IHHHHHmVHILtLL$I(LDHy H5BTH8BDL"I,$pHhZH+HNfH8 Hy H5THH81~IfHLH+;HE1.fDL$$@DI,$LVIHHrIcI,$L]I$HHI $Ht HHL+Iff.@AWHHAVAUATUSHHdH%(HD$81HHHYALy HD$(PH1jjFH HH8HHXIHHHHCL5x L9L-w L9u]DHmt?LMtQLYHH HHrH+IuHHmuHLMuf.1I,$uYLKfHHtaH?IHt!gHH!I,$t1HT$8dH3%(HHH[]A\A]A^A_HA11HD$(Lx 1PjjH HtH8f@H$H+H H+[\$H\$LHHbH@L9L9tHD$MIHHHImHtlHmtUH;HHT$ufHmH*YD$D$_H5RH(fDLfDT$YUHmT$fHL|$HLPt$IŅt=DHCQHmI,$ LDH+>LHHJL9ptDLIHtHHImHHmHgfLHL$uffLH*I*HYfH*f.{q\ff/sfW Pff/sfWPY iPf/CHmI@HSLx8t@I,$t1HD$HH8L(fDI,$tAH{LHmHOH6LIPAL{t 11HD$(Pjj8H H H8HD$!tj"uED$ /N1fT-Of/w;Hr H5q)H8HHir H8HHIr H5)H8HUHSHHHtHϺ,H;|f.M$zuFHH{Tf.MD$L$$Hf.f(~NMfTf.w-tf( $ $uTHf([]$fTf.rAD$fTf.r1"fZuHLH1[]Hf([]K4$f.t$z!YHH 'HHXHHHp H 'cHH 'HHCUHSHf.2L{PD$MD$HՋf(ȅtD$WL$u-Hf([]nfDuD$[D$HtH1[]HH5"]ff.fHH5r=ff.fHH5ff.fHH5ff.fUSHHH H;H-o H9of.KD$ H{H9of.J$~~K$ JfTf.vl$fTf. $D$Hf.f(tf( $ $u[Hf([]wH{t$H9oA<$JHֹH=>%GH1[]fDeHf.EHf.Hf([]!|$f.<$z !#ff.fUSHHHHQH;H-Om H9of.0If(NH{H9o l$f.Il$f(E~%If(5IfTf.rf(fTf.t$8)d$ T$\$0l$l$\$0T$f.f(d$ t$8f.3f.fTf(f.ff/f.G@oH{H9o_HֹH=+#/HH1[]fDf.vR rGf.ztFfff/v f/|f/v&f/v f.fWTHf(zu!fHHf([]D GT$HD$0\$l$ HD$0 F\$T$f.l$ ff(f/ef.f(LD$Ol$HD$0'l$\$0H~%:Gf(5FfTf.T$s^t$8)d$ \$l$0rl$0\$f(d$ f.t$8T$@f(t$ )d$\$0l$l$\$0Hf(f(f(d$t$ f(l$fTf.sf.f.f(T$T$HHf([]f.E2'f.-Dzf(ff/vf.zGuEf(ef.-Dz&u$!UfT-Ef(<"1f ff.H(dH%(HD$1Hh H9FHf.oDf( }DfT Ef.sf.f.D$XD$H|$貿HD$dH3%(L$H=<H(cFufDiD$OD$Ht1HT$dH3%(uwH(fHD$dH3%(f(fTFDuMf(H=f(H(HD$dH3%(uf(H=H(蒾fHf(4CfT Cf.sf.z f/BvNHfff/wfD$D$f!f.z5u3[CHfD˼B!HBHH7Hf(tBfT Cf.r>ff/wdD$YD$f!f.z.u,BH@f.zf/Aw!AHHSHH dH%(HD$1HH;He H9G1f.A$H{HGHt$迾HHmT$ ,$f.-@f$落AfD_${fHֹH=%1HL$dH3 %(H [$$f.%[@z {~ @A$5@fTf.UH<$"fT=AfV=-A<$$b<$f.=?z $ #@fT@f.4$fT5@4$f\UHNHc H5>H8*DH@D$ ?fT#@f.I@HZ$HD$l~ ?HD$f($fTf. 2?wf"PHAWAVIAUIATUSHH>7HHkIAH}H{HHOIH+HHHI/HH HHHT$rHT$HH* HHHL$:HL$IH)HmH+MLIM9t׺HHIA5gHHHmIt{H+t]MthLIM9t4K<{HHtsH` H9(uH+uHIŶM9uHH[]A\A]A^A_fDH蠶Mu1@H舶x19fHmuH1_DH萶HmHtHHH6qHHA_ H9Ft[HӸf.#;{Yf(fT ;f. -;v#fPHHHfD1HշDFfuIHt1HfH(dH%(HD$1H^ H9FtkH#f.s:{if.z+f(fT ;f. w:wff.E„tP1HD$dH3%(uqH=uH(鑷FfuD$胷D$HuH|$讶t$1HL$dH3 %(uH( f.~Z:f(9fTfTf.v@f.~>:fTfV B:fTf. 9zlujfVJ:ff.%`9wff.E„tI~9fTfV 9fTf. 8zu@fV :fV9飶fT9fV98ff.@H\ H9FUSHH5] HHSHHt[覵HHE*H@8HDH111H1HHHŵHm H[]蛵HH誵f.78f((8fTf.H[]/Fk87f(fTf.v3H,f%<7fUH*f(f(fT\fVͱDfD$״D$HnH1[]E111HH膵HHD$HD$fH,f%6fUH*f(f(fT\fVATAUHSHMf.6D$贰D$Hf.f({l$f.~7f(m6fTf.vt$fTf.skf.sHf([]A\餲@tf(L$[L$tH1[]A\fDQeHCH1[]A\ÐEu+HY H5H85H1[]A\f.HY H5H8 DUHSHH(dH%(HD$1HGHf.35zyuwD$謲D$HtaHjY H8Ht$H訰f.4{~D$5fH*L$YXD$D9HL$dH3 %(u]H([]f1HX H5xH81fD|D$߱D$Hb1觯HH5ff.fHH52ff.fATHUSH dH%(HD$1HFHD$HtFHHW H52H8.1HL$dH3 %(HH []A\@1HT$H5%tH|$H5Hl$HHtHtHH5HHtHHH+It[HELHPHUH[H߭Nf.1HL$HT$H5(舰_H蠭fDH+H1脭f.HH5V 1ff.HH5"W 1ff.HH5V 1{ff.HH5W 1[ff.HH5V 1;ff.HH5U 1ff.HH5U 1ff.HH5V HH5U HH5U HH5U 1{ff.HH5r 1[ff.HH5U 1;ff.HH5JU HH5U 1ff.HH5U 1ff.HH5"U 1ff.AWAVAUIATUHSHdH%(H$1HHLd$ Ld$1fE1L5T QH;T L$tY蜭f./L${YfT01f. C_If(L9~ZK|HGL9uGDsf./L$zuL$HL/L$DfT0f.p/ff.E„ulH~f.f1AH^Yf(X\Xf(XH9\.fXf.QYL;d$tLL$"L$f(#H$dH3 %(Hĸ[]A\A]A^A_f.H<IHD$ HD$M(8 N.L;d$s1L;d$tLHD$苪HD$nf\cT$L$rT$L$Hf(-fT t.f.r>ff/wdD$ɧD$f!f.z.u,).H@f.zf/*-w苧!m-HHGAWAVAUATUSHHdH%(H$1Ht!HֹH=M6L#H[ID$uD$$HCD$ tLkM9l$I MLt$0Lt$(HD$E11DH;P kf.N,HG,D$HD$H|HGH;.P @H;P 趩f.,H+HD$l$1\f(fT,f.A_D$HD$A I9I|HGH;O 5wt$WDJ<#IHD$0HD$(MXH}+%K+f.d$GA踨HD$(@蕨H\|$|$èfDGfDf(fT|+f.*Efۺf.E„uyI~s8*f1f.A ^L$YHf(X\Xf(XI9\)fXf.QYL$L$L;t$(tL膦t$$t I,$+L$ t H+ D$fHH$dH3 %(HHH[]A\A]A^A_L;t$(tLT$$tI,$uLjf.D$ t H+1fDLxD$$IHwfHXD$ HHp|$$tI,$uL%=)|$DHL谣HL H5'1H80H1~fft$kܣL$L$5fDH~H;=QL ATUHSHH5M HHHFHHCt>H@8HHt1111H1HHHnH+It(L[]A\DE111HHH+IuH腢L[]A\D#UE1fDHG`HHIHuHEH5&HPH}K H81蓥iff.UHSHHK H9FH5 L HӢHHt[&HHC H@8HH111H1HHHFH+H[]DHH*f.z&zuD$D$Hu`'f(&fTf.v3H,ff(%%fUf(H*fTXfVH[]l@H1[]HHD$ˠHD$H[]E111HH& H=K f.\%z uáHHpitaunextafterintermediate overflow in fsummath.fsum partials-inf + inf in fsumpermk must not exceed %lldcombmath domain errormath range errorremaindercopysignatan2fmodpow(dd)ldexp(di)OO:logdist__ceil____floor__rel_tolabs_tolisclose__trunc__startprodmathacosacoshasinasinhatanatanhceildegreeserferfcexpm1fabsfactorialfloorfrexpgcdhypotisfiniteisinfisnanisqrtlcmlgammalog1plog10log2modfradianstrunculp0pThis module provides access to the mathematical functions defined by the C standard.hypot(*coordinates) -> value Multidimensional Euclidean distance from the origin to a point. Roughly equivalent to: sqrt(sum(x**2 for x in coordinates)) For a two dimensional point (x, y), gives the hypotenuse using the Pythagorean theorem: sqrt(x*x + y*y). For example, the hypotenuse of a 3/4/5 right triangle is: >>> hypot(3.0, 4.0) 5.0 x_7a(s(;LXww0uw~Cs+|g!tanh($module, x, /) -- Return the hyperbolic tangent of x.tan($module, x, /) -- Return the tangent of x (measured in radians).sqrt($module, x, /) -- Return the square root of x.sinh($module, x, /) -- Return the hyperbolic sine of x.sin($module, x, /) -- Return the sine of x (measured in radians).remainder($module, x, y, /) -- Difference between x and the closest integer multiple of y. Return x - n*y where n*y is the closest integer multiple of y. In the case where x is exactly halfway between two multiples of y, the nearest even value of n is used. The result is always exact.log1p($module, x, /) -- Return the natural logarithm of 1+x (base e). The result is computed in a way which is accurate for x near zero.lgamma($module, x, /) -- Natural logarithm of absolute value of Gamma function at x.gamma($module, x, /) -- Gamma function at x.fabs($module, x, /) -- Return the absolute value of the float x.expm1($module, x, /) -- Return exp(x)-1. This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.exp($module, x, /) -- Return e raised to the power of x.erfc($module, x, /) -- Complementary error function at x.erf($module, x, /) -- Error function at x.cosh($module, x, /) -- Return the hyperbolic cosine of x.cos($module, x, /) -- Return the cosine of x (measured in radians).copysign($module, x, y, /) -- Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns -1.0. atanh($module, x, /) -- Return the inverse hyperbolic tangent of x.atan2($module, y, x, /) -- Return the arc tangent (measured in radians) of y/x. Unlike atan(y/x), the signs of both x and y are considered.atan($module, x, /) -- Return the arc tangent (measured in radians) of x. The result is between -pi/2 and pi/2.asinh($module, x, /) -- Return the inverse hyperbolic sine of x.asin($module, x, /) -- Return the arc sine (measured in radians) of x. The result is between -pi/2 and pi/2.acosh($module, x, /) -- Return the inverse hyperbolic cosine of x.acos($module, x, /) -- Return the arc cosine (measured in radians) of x. The result is between 0 and pi.lcm($module, *integers) -- Least Common Multiple.gcd($module, *integers) -- Greatest Common Divisor.??@@8@^@@@@&AKAAA2A(;L4BuwsBuwB7Bs6Ch0{CZAC Ƶ;(DlYaRwNDAiAApqAAqqiA{DAA@@P@?CQBWLup#B2 B&"B补A?tA*_{ A]v}ALPEA뇇BAX@R;{`Zj@' @ulp($module, x, /) -- Return the value of the least significant bit of the float x.nextafter($module, x, y, /) -- Return the next floating-point value after x towards y.comb($module, n, k, /) -- Number of ways to choose k items from n items without repetition and without order. Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates to zero when k > n. Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial expansion of the expression (1 + x)**n. Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments are negative.perm($module, n, k=None, /) -- Number of ways to choose k items from n items without repetition and with order. Evaluates to n! / (n - k)! when k <= n and evaluates to zero when k > n. If k is not specified or is None, then k defaults to n and the function returns n!. Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments are negative.prod($module, iterable, /, *, start=1) -- Calculate the product of all the elements in the input iterable. The default start value for the product is 1. When the iterable is empty, return the start value. This function is intended specifically for use with numeric values and may reject non-numeric types.isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0) -- Determine whether two floating point numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.isinf($module, x, /) -- Return True if x is a positive or negative infinity, and False otherwise.isnan($module, x, /) -- Return True if x is a NaN (not a number), and False otherwise.isfinite($module, x, /) -- Return True if x is neither an infinity nor a NaN, and False otherwise.radians($module, x, /) -- Convert angle x from degrees to radians.degrees($module, x, /) -- Convert angle x from radians to degrees.pow($module, x, y, /) -- Return x**y (x to the power of y).dist($module, p, q, /) -- Return the Euclidean distance between two points p and q. The points should be specified as sequences (or iterables) of coordinates. Both inputs must have the same dimension. Roughly equivalent to: sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))fmod($module, x, y, /) -- Return fmod(x, y), according to platform C. x % y may differ.log10($module, x, /) -- Return the base 10 logarithm of x.log2($module, x, /) -- Return the base 2 logarithm of x.log(x, [base=math.e]) Return the logarithm of x to the given base. If the base not specified, returns the natural logarithm (base e) of x.modf($module, x, /) -- Return the fractional and integer parts of x. Both results carry the sign of x and are floats.ldexp($module, x, i, /) -- Return x * (2**i). This is essentially the inverse of frexp().frexp($module, x, /) -- Return the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2.**e. If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.trunc($module, x, /) -- Truncates the Real x to the nearest Integral toward 0. Uses the __trunc__ magic method.factorial($module, x, /) -- Find x!. Raise a ValueError if x is negative or non-integral.isqrt($module, n, /) -- Return the integer part of the square root of the input.fsum($module, seq, /) -- Return an accurate floating point sum of values in the iterable seq. Assumes IEEE-754 floating point arithmetic.floor($module, x, /) -- Return the floor of x as an Integral. This is the largest integer <= x.ceil($module, x, /) -- Return the ceiling of x as an Integral. This is the smallest integer >= x.isqrt() argument must be nonnegativeUsing factorial() with floats is deprecatedfactorial() only accepts integral valuesfactorial() argument should not exceed %ldfactorial() not defined for negative valuesn must be a non-negative integerk must be a non-negative integertolerances must be non-negativemin(n - k, k) must not exceed %lldExpected an int as second argument to ldexp.math.log requires 1 to 2 argumentsboth points must have the same number of dimensionstype %.100s doesn't define __trunc__ method?' @CQB@-DT! @iW @-DT!@9RFߑ9RFߑ?cܥLcܥL@?@?0C#B ;E@HP?7@i@E@-DT! a@?& .>@@?-DT!?!3|@-DT!?-DT! @;lLsx~P4X@tА 4P`@Th   @(`<P0Pp` d ` @t  4  P 4 @h `| @ ` 0 D X l @ ` 0p 0zRx $ qFJ w?:*3$"Dv\{pl|S|E J F h}U^eX H F }U^eX H F4 ~EAG0a AAH } CAG $~rH0\ D d D HT&D  E $dh6H0B F Z F xFEB B(A0A8D`w 8C0A(B BBBE h 8D0A(B BBBF 8 8D0A(E BEBM wU`cR F F ,pUpsU K F$PH@v B W I I G LxGFEB B(A0A8G  8A0A(B BBBA p'BHG D(J@t (A ABBG a (D ABBF R (C ABBF V (A ABBD H<FBB B(A0A8G`{ 8A0A(B BBBF HdFBB E(A0D8G`( 8A0A(B BBBC   H@s E  J D FAA JpdxXBBIpG  AABJ HhFBB B(A0A8G` 8A0A(B BBBC x}FHB B(A0A8D]WGBI? 8A0A(B BBBI D^BBIiWBBI @lD T H X H _@d`ADG0 EAF H CAD J EAH 0(ADD0N EAK \CA,@TDhEAG0 EAH M CAG D EAF D<EAG` CAG ` EAJ  EAM ,~H0 H F J o Q d E ,(H n J y G W I L D D XH S E g I D |EG0 AD d̵ZOBE E(A0A8DP1 8D0A(B BBBA pPP`ķ?OBE E(A0A8D@ 8D0A(B BBBG hP@ lHF R F J f H0 F Z A HVAQ0b AAD JAAl0d CAH \ ;BDD D0  EABI c  CABG X  CABB _  CABK (t h9ADG@ AAC  | 0 fFDA D@`  AABE  п ܿ$ 8 L ` t  $ 0 < H T ` l x( < LP FBB E(A0D8G 8A0A(B BBBK H S E g I DL XFBB B(A0A8Jf 8A0A(B BBBH D "WAD s ABF g ABF XP L\ oEDD0{ AAF  AAI D CAH V AAH   GNU:`: "jr? / p  o`   X 8(p oooooH /00 000@0P0`0p00000000011 101@1P1`1p11111111122 202@2P2`2p22222222233 303@3P3`3p33333333344 404@4P4`4p44444444W` z0  ` ;pЈ ,n Г#pn`0P–0=R@ʖoΖo@BpӖ`ٖޖS P2o`PЕM`op~z] @H G`C|`@0y`@o`N@$Љ*05Pv7q:<@Pn@0P`p BfՕW@a`=H@\GCC: (GNU) 8.5.0 20210514 (Red Hat 8.5.0-26)GA$3a1/} GA$3p1113:mGA*GA$annobin gcc 8.5.0 20210514GA$plugin name: gcc-annobinGA$running gcc 8.5.0 20210514GA*GA*GA! GA*FORTIFYGA+GLIBCXX_ASSERTIONS GA*GOW*GA*cf_protectionGA+omit_frame_pointerGA+stack_clashGA!stack_realign GA*FORTIFY:};GA+GLIBCXX_ASSERTIONS : P1 9K 9i 9 9 9 9 9 9% :@ };Y :e hxh }; ; ;S ; < ; <6 /=P <] /=y = 0= = > = > 2@ >r) 2@@ fAU @@&] fAu C pA6 C G C G 7H Gw 7H+ HF @HT Hl L H L GR MG GR wS$ PR'> wS\ Wx S` W \ W \ )\ \  )\ 9\* 0\ 0 9\H ]^ @\g ] a ]@ @ a f a f  Ml" f}, @: MlR lh Plq l Pn l` Pn mn Pn mn n# pn1 nK nc nn @v n 9o n 9o So @o So  so  `o'  so@  oW  oa  oy  o  o  o  q  o  q  Dv  q  Dv"  w9  Pv~C  wY  xm  wt  x  )y  x  )y  |  0y  |  j~  |Z  j~.  D  p~?M  g  G    G  @  P  @  A  A  8%  P0  E  8t  {  @;  {    9  ,  ӆC  M  ӆg        f  f  f   p  5 @ Y ňp z ň  Ј      %# . %F E\ 0e E~ h P h  p    , ʼnC M ʼng  Љ     (  ( E+ 05 EM ec Pl e  p      ( ? I c “{ "  “ ? Гo  ? P h( (80 HUS `` kkyDoB r Ed`E;D#@4,A@;O:\`kBy \b`Z.5g d)c;`XMR_`3l`\~`V@<:x=@D @C%935A`FN <\rn6@`XU P m 9 9 95 9S 9l 9 9 9 P m 9 : `:@ # J :V ut p H  P0@ X  /8` p8( / / 4 9 p0x   H X  @ H`$7Uh{ W(5@ <HZiu +<Ueu+l=K^k} 2I]pII,H +@ 7G_k @w%  $9H[mz".annobin_mathmodule.c.annobin_mathmodule.c_end.annobin_mathmodule.c.hot.annobin_mathmodule.c_end.hot.annobin_mathmodule.c.unlikely.annobin_mathmodule.c_end.unlikely.annobin_mathmodule.c.startup.annobin_mathmodule.c_end.startup.annobin_mathmodule.c.exit.annobin_mathmodule.c_end.exit.annobin_lanczos_sum.start.annobin_lanczos_sum.endlanczos_sumlanczos_num_coeffslanczos_den_coeffs.annobin__approximate_isqrt.start.annobin__approximate_isqrt.end_approximate_isqrt.annobin_math_exec.start.annobin_math_exec.endmath_exec.annobin_math_radians.start.annobin_math_radians.endmath_radians.annobin_math_degrees.start.annobin_math_degrees.endmath_degrees.annobin_math_nextafter.start.annobin_math_nextafter.endmath_nextafter.annobin_m_remainder.start.annobin_m_remainder.endm_remainder.annobin_m_sinpi.start.annobin_m_sinpi.endm_sinpi.annobin_m_lgamma.start.annobin_m_lgamma.endm_lgamma.annobin_math_isqrt.start.annobin_math_isqrt.endmath_isqrt.annobin_math_isnan.start.annobin_math_isnan.endmath_isnan.annobin_math_isfinite.start.annobin_math_isfinite.endmath_isfinite.annobin_m_tgamma.start.annobin_m_tgamma.endm_tgammagamma_integral.annobin_math_fsum.start.annobin_math_fsum.endmath_fsum.annobin_factorial_partial_product.start.annobin_factorial_partial_product.endfactorial_partial_product.annobin_math_factorial.start.annobin_math_factorial.endmath_factorialSmallFactorials.annobin_math_perm.start.annobin_math_perm.endmath_perm.annobin_m_erfc.start.annobin_m_erfc.endm_erfc.annobin_m_erf.start.annobin_m_erf.endm_erf.annobin_math_ulp.start.annobin_math_ulp.endmath_ulp.annobin_math_isclose.start.annobin_math_isclose.endmath_isclose_parser.15289.annobin_math_comb.start.annobin_math_comb.endmath_comb.annobin_math_prod.start.annobin_math_prod.endmath_prod_parser.15312.annobin_is_error.start.annobin_is_error.endis_error.annobin_math_2.start.annobin_math_2.endmath_2.annobin_math_remainder.start.annobin_math_remainder.endmath_remainder.annobin_math_copysign.start.annobin_math_copysign.endmath_copysign.annobin_math_atan2.start.annobin_math_atan2.endmath_atan2m_atan2.annobin_math_1a.start.annobin_math_1a.endmath_1a.annobin_math_lgamma.start.annobin_math_lgamma.endmath_lgamma.annobin_math_gamma.start.annobin_math_gamma.endmath_gamma.annobin_math_erfc.start.annobin_math_erfc.endmath_erfc.annobin_math_erf.start.annobin_math_erf.endmath_erf.annobin_math_fmod.start.annobin_math_fmod.endmath_fmod.annobin_math_pow.start.annobin_math_pow.endmath_pow.annobin_math_modf.start.annobin_math_modf.endmath_modf.annobin_m_log2.start.annobin_m_log2.endm_log2.annobin_m_log.start.annobin_m_log.endm_log.annobin_math_ldexp.start.annobin_math_ldexp.endmath_ldexp.annobin_math_lcm.start.annobin_math_lcm.endmath_lcm.annobin_math_gcd.start.annobin_math_gcd.endmath_gcd.annobin_math_isinf.start.annobin_math_isinf.endmath_isinf.annobin_math_frexp.start.annobin_math_frexp.endmath_frexp.annobin_m_atan2.start.annobin_m_atan2.end.annobin_math_floor.start.annobin_math_floor.endmath_floorPyId___floor__.15621.annobin_math_1_to_whatever.constprop.34.start.annobin_math_1_to_whatever.constprop.34.endmath_1_to_whatever.constprop.34.annobin_loghelper.isra.17.start.annobin_loghelper.isra.17.endloghelper.isra.17.annobin_math_log2.start.annobin_math_log2.endmath_log2.annobin_math_log10.start.annobin_math_log10.endmath_log10m_log10.annobin_math_log.start.annobin_math_log.endmath_log.annobin_math_acos.start.annobin_math_acos.endmath_acos.annobin_math_acosh.start.annobin_math_acosh.endmath_acosh.annobin_math_asin.start.annobin_math_asin.endmath_asin.annobin_math_asinh.start.annobin_math_asinh.endmath_asinh.annobin_math_atan.start.annobin_math_atan.endmath_atan.annobin_math_atanh.start.annobin_math_atanh.endmath_atanh.annobin_math_cos.start.annobin_math_cos.endmath_cos.annobin_math_cosh.start.annobin_math_cosh.endmath_cosh.annobin_math_exp.start.annobin_math_exp.endmath_exp.annobin_math_expm1.start.annobin_math_expm1.endmath_expm1.annobin_math_fabs.start.annobin_math_fabs.endmath_fabs.annobin_math_log1p.start.annobin_math_log1p.endmath_log1p.annobin_math_sin.start.annobin_math_sin.endmath_sin.annobin_math_sinh.start.annobin_math_sinh.endmath_sinh.annobin_math_sqrt.start.annobin_math_sqrt.endmath_sqrt.annobin_math_tan.start.annobin_math_tan.endmath_tan.annobin_math_tanh.start.annobin_math_tanh.endmath_tanh.annobin_math_hypot.start.annobin_math_hypot.endmath_hypot.annobin_m_log10.start.annobin_m_log10.end.annobin_math_dist.start.annobin_math_dist.endmath_dist.annobin_math_trunc.start.annobin_math_trunc.endmath_truncPyId___trunc__.15797.annobin_math_ceil.start.annobin_math_ceil.endmath_ceilPyId___ceil__.15571.annobin_PyInit_math.start.annobin_PyInit_math.endmathmodule_keywords.15288_keywords.15311module_docmath_methodsmath_slotsmath_acos_docmath_acosh_docmath_asin_docmath_asinh_docmath_atan_docmath_atan2_docmath_atanh_docmath_ceil__doc__math_copysign_docmath_cos_docmath_cosh_docmath_degrees__doc__math_dist__doc__math_erf_docmath_erfc_docmath_exp_docmath_expm1_docmath_fabs_docmath_factorial__doc__math_floor__doc__math_fmod__doc__math_frexp__doc__math_fsum__doc__math_gamma_docmath_gcd_docmath_hypot_docmath_isclose__doc__math_isfinite__doc__math_isinf__doc__math_isnan__doc__math_isqrt__doc__math_lcm_docmath_ldexp__doc__math_lgamma_docmath_log__doc__math_log1p_docmath_log10__doc__math_log2__doc__math_modf__doc__math_pow__doc__math_radians__doc__math_remainder_docmath_sin_docmath_sinh_docmath_sqrt_docmath_tan_docmath_tanh_docmath_trunc__doc__math_prod__doc__math_perm__doc__math_comb__doc__math_nextafter__doc__math_ulp__doc__.annobin__math.c.annobin__math.c_end.annobin__math.c.hot.annobin__math.c_end.hot.annobin__math.c.unlikely.annobin__math.c_end.unlikely.annobin__math.c.startup.annobin__math.c_end.startup.annobin__math.c.exit.annobin__math.c_end.exit.annobin__Py_log1p.start.annobin__Py_log1p.endderegister_tm_clones__do_global_dtors_auxcompleted.7303__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END___fini__dso_handle_DYNAMIC_Py_log1p__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE__initerfc@@GLIBC_2.2.5PyLong_AsLongLongAndOverflowerf@@GLIBC_2.2.5atanh@@GLIBC_2.2.5__errno_location@@GLIBC_2.2.5ldexp@@GLIBC_2.2.5round@@GLIBC_2.2.5_ITM_deregisterTMCloneTablePyFloat_TypePyModuleDef_InitPyLong_FromDoublePyMem_FreePyErr_SetFromErrnoPyLong_FromUnsignedLongLongPyLong_AsUnsignedLongLongPyNumber_AddPyErr_WarnEx_edata_Py_Deallocatan@@GLIBC_2.2.5PyErr_NoMemoryPyIter_Next_PyLong_SignPyNumber_AbsolutePyNumber_Multiply_PyLong_NumBits_PyLong_Rshift__stack_chk_fail@@GLIBC_2.4PyExc_MemoryError_PyArg_UnpackKeywordsPyErr_SetStringmodf@@GLIBC_2.2.5PyExc_ValueErrorPyExc_DeprecationWarningPyObject_MallocPyExc_TypeError_PyLong_Frexplog2@@GLIBC_2.2.5_PyObject_LookupSpecial_PyLong_CopyPyMem_ReallocPyErr_ExceptionMatchespow@@GLIBC_2.2.5log@@GLIBC_2.2.5log1p@@GLIBC_2.2.5nextafter@@GLIBC_2.2.5fmod@@GLIBC_2.2.5PyObject_FreePyFloat_FromDoublePyType_Readyacos@@GLIBC_2.2.5PyLong_FromLongPyObject_RichCompareBoolfrexp@@GLIBC_2.2.5_PyLong_GCDPyErr_ClearPyBool_FromLonglog10@@GLIBC_2.2.5_Py_bit_length_Py_dg_stdnan__gmon_start__PyThreadState_Get_PyArg_CheckPositionalPyExc_OverflowErrormemcpy@@GLIBC_2.14PyLong_AsLongAndOverflowexpm1@@GLIBC_2.2.5Py_BuildValuePyErr_Occurred_Py_CheckFunctionResult_Py_NoneStructPyFloat_AsDoublePyArg_ParseTupleatan2@@GLIBC_2.2.5copysign@@GLIBC_2.2.5__bss_startPyLong_AsDoublePyLong_FromUnsignedLongPyLong_TypePyInit_math_Py_dg_infinityPyObject_GetIterPyModule_AddObject_PyLong_OnePySequence_TuplePyType_IsSubtypefabs@@GLIBC_2.2.5asin@@GLIBC_2.2.5PyErr_Format_ITM_registerTMCloneTable_PyObject_MakeTpCallPyNumber_Indexacosh@@GLIBC_2.2.5sqrt@@GLIBC_2.2.5_PyLong_ZeroPyMem_Malloc__cxa_finalize@@GLIBC_2.2.5PyNumber_SubtractPyNumber_TrueDivide_PyLong_Lshiftasinh@@GLIBC_2.2.5PyNumber_FloorDivide.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.note.gnu.property.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.comment.gnu.build.attributes88$.o``48 h @ HoUodppnB8(8(x//s//~4499}[pp & 00l xx    h H HX X @ @ @0@- H`pH8+_  5#