ELF>o@@8 @ $$,0- $$888$$ Std PtdZZZQtdRtd$$PPGNUfEIA/ATN@ BE|qXG~Vc-`D &UX*M:DdS#&2Rn Bv _Q06 x lBq$5b3l3{r7 pa&, +F"|g%z%n% J __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyTuple_Type_Py_NoneStructPyObject_CallObject_PyObject_NewPyUnicode_FromFormat__stack_chk_failPyLong_FromSsize_tPyLong_FromLongPyList_AsTuplePyErr_SetStringPyUnicode_NewmemcpyPyExc_RuntimeErrorPyErr_NoMemoryPyExc_TypeErrorPyContextVar_Set_Py_DeallocPyContextVar_GetPyType_IsSubtypePyDict_New_Py_FalseStructPyDict_SetItem_Py_TrueStructPyObject_FreePyTuple_SizePyLong_AsLongPyLong_AsSsize_tPyExc_ValueErrorPyMem_MallocsnprintfPyErr_OccurredPyMem_FreePyUnicode_CompareWithASCIIString__strcat_chk__snprintf_chkPyLong_FromUnsignedLongPyUnicode_FromStringPy_BuildValuePyObject_CallFunctionObjArgsstrlenPyTuple_NewPyList_NewPyList_AppendPyErr_SetObject_PyLong_NewPyExc_OverflowErrorPyFloat_TypePyFloat_AsDoublePyArg_ParseTupleAndKeywordsPyDict_SizePyObject_IsTruePyDict_GetItemWithErrorPyExc_KeyError_Py_NotImplementedStructPyErr_ClearPyUnicode_ComparePyObject_GenericGetAttrPyObject_GenericSetAttrPyExc_AttributeErrorstrcmpPyErr_FormatPyArg_ParseTuplembstowcsPyUnicode_FromWideCharPyUnicode_AsUTF8StringPyList_SizePyList_GetItem_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_PyUnicode_ReadyPyFloat_FromStringPyComplex_FromDoublesPyComplex_TypePyObject_IsInstancePyObject_GetAttrStringPyBool_FromLongPyComplex_AsCComplexPyFloat_FromDoublePyUnicode_AsUTF8AndSizePyDict_GetItemStringPyUnicode_DecodeUTF8PyTuple_Pack_PyLong_GCDPyInit__decimalPyMem_ReallocPyLong_TypePyBaseObject_TypePyType_ReadyPyDict_SetItemStringPyImport_ImportModulePyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyExc_ZeroDivisionErrorPyContextVar_NewPyModule_AddIntConstantPyUnicode_InternFromStringPyModule_AddStringConstantPyObject_HashNotImplementedPyType_GenericNewstderr__fprintf_chkfputcabortraise__ctype_b_loc__errno_locationstrtolllocaleconv__ctype_tolower_locmemmovefwrite__printf_chkmemsetfreecallocreallocmallocceillog10__memcpy_chklibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5GLIBC_2.3GLIBC_2.14GLIBC_2.4GLIBC_2.3.4/opt/imh-python/libC ui M ui ]ii ii ui ti $p$@p$$$`XH$%$%$%$$ $0$@$P$`$h$$$$$$$$$$$$0$8$P$X$p$x$$$$$$$$$$$ $0$@$P$`$h$$$$$$$$$$$ $($@$H$`$h$$$$$$$]$$$$$$$$k$w0$@$P$`$p$$$@F$ $ $($8$F@$H$|X$E`$%h$x$`D$$$$$P$$2$0$`$5$$  $@($8$@$;H$0X$ `$Fh$x$$P$$$K$$ $Z$P$$f$p$ $x$P$ $($8$@$H$P{X$`$h$`px$@$$r$$$0n$$$a$`$$$$$O$` $($\8$@$H$ZX$`$h$Sx$@$$g$$$^$`$$PX$@$$l$`$$t$ $ ($pe8$`@$H$pX$`$h$Kx$$$v$$#$v$@$($`u$$.$$ $;$P$ $E($8$`@$QH$0X$`$Xh$x$$b$p$@$j$$$t$$$|$$ $$$ $($@$1H$`X$`$h$x$$$$@$$p$@$$$$$$@$$P$ $($8$@$H$X$`$h$Dx$$$F$$$`M$$!$ V$$-$i$$8$v$ $D($ y8$@@$KH$pX$`$Xh$@cx$$_$Q$ $e$q$ $q$p$$}$0q$$ $($0q8$@$H$X$`$h$x$$$$`4$2$@$*$5$$)$;$$@# $F($P8$`"@$PH$X$`$Zh$0x$ $f$`$ $x$0$ $$$$$/$`?$$)$> $($p48$&@$H$`,X$`%`$h$!x$$$$P$$ $$$'$ !$$$$$9$$$@$`1 $.($`8$0@$;H$0X$ 0`$Eh$x$/$Q$$ /$b$Я$-$t$p$,$j$$ -$$@$`+ $X($8$ .@$|H$pX$+`$h$xx$B$1$ q$`@$$$8$($u$$$$7$$P$ 7 $($8$(@$H$X$'`$h$x$@$$p$ $$ $:$$$8$$P$@5$K$pH$@ $!($<8$ (@$-H$AX$ '`$8h$x$&$D$ 7$$X$0?$`$_$1$@$$$@2$$$@B $X($@8$ A@$}H$о`$h$о$$`$$$$$$$$ $($@$H$ `$&h$w$$ $p$ $@$0$$$$pv $`0$@$@$}$1$$6$pu@$;H$~`$Eh$p~$$s$`$$s$$$ps$P$ $@s($@$H$0sP$h$p$sx$0$$}$p$$ $o($n0$8$n@$nH$nP$OX$n`$nh$np$x$$_$2P$+$n$f$$$$$$ $($`$nh$f$$$$$$$+$#$2P$5 $O($G@$_H$W`$oh$g$N$q$$h$@x$p$$$pX$wp$~($@$$%P8%vp%x%%`%$%$%%%%s%%$%@x%0% CH%h%$x%$%P %IG(%WG@%fGH%oGP%zGX%G`%Gh%Gp%Gx%G%G%%o%UN%lN%UN%UN%UN%O%UN%UN%UN%}N%%_%2P%+ %o(%N0%lN8%N@%NH%NP%OX%N`%ZNh%Np%}Nx%%_%2P%+$$ $($0$8$@$!H$%P$&X$*`$+h$:p$>x$B$C$G$I$V$W$_$b$e$m$v$y$z$$'0$F$F%F$( %.%.%%6%^%S$$$$$ $($0$ 8$ @$ H$ P$ X$`$h$p$x$$$$$$$$$$ $"$#$$$)$,$-$.$/$0$1$2 $3($40$58$7@$8H$9P$;X$<`$=h$?p$@x$A$D$E$F$H$J$K$L$M$N$O$P$Q$R$T$U$X$Y$Z$[$\ $]($`0$a8$c@$dH$fP$gX$h`$ih$jp$kx$l$n$o$p$q$r$s$t$u$w$x$y$z${$|$}$~$$HHi|$HtH5x$%x$hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahb%}r$D%ur$D%mr$D%er$D%]r$D%Ur$D%Mr$D%Er$D%=r$D%5r$D%-r$D%%r$D%r$D%r$D% r$D%r$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%q$D%}q$D%uq$D%mq$D%eq$D%]q$D%Uq$D%Mq$D%Eq$D%=q$D%5q$D%-q$D%%q$D%q$D%q$D% q$D%q$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%p$D%}p$D%up$D%mp$D%ep$D%]p$D%Up$D%Mp$D%Ep$D%=p$D%5p$D%-p$D%%p$D%p$D%p$D% p$D%p$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%o$D%}o$D%uo$D%mo$Dkfa\WRMf.H=$H$H9tH&o$Ht H=$H5$H)HHH?HHtHo$HtfD=$u+UH=o$Ht H=^h$dm$]wff.HG1Ð fDHUn$H=~$HDHn$G(HfHn$G,HfHH@S1HH=$Ht(oC@oK H oS0P0SP@0PP[ff.H$HH9tP10Ht4HPHH@@0H@ H@(H@0H@8HP@Hf.+fHdH%(H$1H=J$tPHGHHT$PLuhH=shDH$$@HpDHH1HIEH HHHrH8uHH==p1$t$P$t$X$t$`$t$h$t$p$t$x$L$L$HL$xH$Ht$pHpH$dH3<%(uHĨHHOFHHcSHcPsHHEH$HHHHfHHEHHHHEHHHHOEHHSHH!HCH[H@ff.AVAUIATIUHSjHHt;HULpHx2Ht:HHuMLAUA@6XZH[]A\A]A^HڹHuHC@uLH0HC0>)HC L#LLLNH[]A\A]A^@H@@L1HHC0(HC L#H[]A\A]A^UH=t$SHjHHt1H@@Hk1HH HC0(HC H1#HH[]f.UH=$SHHHt1H@@Hk1HHHC0!(HC H"HH[]HGHu.tBfHHH1Hf.HHATIUHSH HHt@ uH{HHLZH[]A\fHS0H{H@HEHH?HfHH_HHHH/HHATH C$yUSHHW,dH%(H$1HHxL$S(yH $LxwdHcS4H$HHK HsDKPH=lHЋC8ATULCP1H H$dH3<%(u/H[]A\fHg$H5kH8Z1AUSHHHHGHh 2t HC8HlHH[]SH_H1t [cH[HOff.@AWAVAUATUSHLdH%(H$1It.H$dH3 %(LaH[]A\A]A^A_fH_IHD$ H$HH$HD$HHH$H$HD$xH$HD$(HD$0HD$8HD$@D$PHD$XHD$`HD$hHD$pHDŽ$ Ƅ$HDŽ$HDŽ$HDŽ$HDŽ$H$D$t1H#HE1M~DL$L= IHHHIv HD$H,LHHH$JHT$ H$HT$L $HLHM3H$HH- HEH"L$LLHd HHH$H$HXLIH$˩HT$LHL$H H4$Hx+HILHڅHLDILDD$uaH*d$H5hH8LPHHHLHHH$[IHT$ Ht$PHT$[fH(LcMi/+f+fDMp LHwc$H5gH8(ff.SH=$1!HtJ@,H=$HH#HtH(tH[HxH[H+uHb1H[ff.HH=E$1dH%(HD$1Hkx7H$HtHL$dH3 %(u"Hf;f1'USHHH~H5$H9t ~H9$tH9$tH9$t HDH1HHt~@,H=p$HH+HtHtZHmt#H$b$HH[]ÐH8fDH(fDHa$H5\H8Z1fDH1[]ATUSHGD Ht\H=o}$HtQHc}$"Hqa$HsHMx'H H;t&DctHza$HsH&yHmt 1H[]A\ÐH1fH[]A\ff.HHw1]HtH(tHa$HHfHfDSHwH1HtH(tHCH[HfDSHHHtH/t)H{HtH/t H[QH[BffAWAVAUATUSHH(dH%(HD$1:HH{HGvHlHrHk(D$-D$HEHHE1HD$HHS_$H{ HdH0HHHLxHLIHHHL$L1HZHL9MtHH{HGtRE18H wDEu 0IAFIL9J|HGt>HuHuHo^$H5cH8(H+DLVE1*HufDH1^$H5*cE1H8HL$dH3 %(LH([]A\A]A^A_ÐH]$H5bE1H8DH5OYHH5EZHAąH|$H5YHD$)Hy]$H5XE1H8/Cf.H+H@H|$H5XATHD$fD|$uA0IA|$H+fDH\$H5bbH8]D;H\KDH5pHAąu$H|$H5WHD$ H_\$H5aE1H8)AELL$I~1LWH-Hff.fSHH@HtH/t9H{HHtH/tHCH[H@f+ffAWAVAUIATUHoSHH-HHHHIH$?H=V HH1H=V1IHH=̀$E1HLL1HII,$I/fHt HmHL[]A\A]A^A_fDHI} HH+H{HCHH+IHoHHIHD$wIHt9ME1KDIL9t$C|50Hc[HuHE1L2$I,$uLCMI/L(HH H=VHWHDOH1IHJDHI$E1HI$kE1X[E1cH=~$E1HLL1HI+ fDkf[H끐HUy$SH910HHH=$1iHC@HH=~$1NHCHHtUH~$HtaoBCoJ K oR0S0HS@HK(HJHS,HPHCPHCX[fDH+uH1H[focfo%cfo-d[c k0fH#H+HCHt1ff.AU1ATUSH_( w,ڀtOuU!H=s$t Hs$s$tPXuKH H8uHJW$H5 ]H8 H[]A\A]H[]A\A]LhMtN1PIHt?H=Pr$tNH-Gr$DH H}t5]tHuLyI,$tiH[]A\A]fH=r$t9H-r$DH H}t ]tHuL\xH H}uLLLfDAUAATUHSH_HHXdH%(HD$H1D$| tIHoU0oEHHoM HT$)T$0Dl$4Ll$L)D$)L$ Ȩt$H MH|$L@1D$HD$IHHHHH\$HxJHHz$M BLI]tfDHCTuHHuH]L L( HL$HdH3 %(HHX[]A\A]fDH|$z$L 3L1 HtDHT$H5.P1H8>H(H B$dH%(HD$1LD$D$ H\$aHD$H9HxH5 b$H9t H=c$HHtZHD$HuH{HL$ HPot$ H|$uHL$dH3 %(HugH([]H+u Hf1@#HD$HtH(qHWdfH@$H5F1H8nff.UH A$HHSHH<H(H@$dH%(HD$1LD$D$ H\$HD$H9HxH5`$H9t fH=Wb$RHHtZHD$HuH{HL$ HPot$ H|$AuHL$dH3 %(HugH([]H+u H2f1@HD$HtH(qHdfH?$H5E1H88ff.UH $@$HHSHH;H(H?$dH%(HD$1LD$D$ H\$HD$H9HxH5_$H9t H=a$HHtZHD$HuH{HL$ HPt$ H|$uHL$dH3 %(HugH([]H+u Hf1@HD$HtH(qHdfH9>$H5:D1H8ff.UH >$HHSHHN:H(H0>$dH%(HD$1LD$D$ H\$qHD$H9HxH50^$H9t H=_$HHtZHD$HuH{HL$ HP_t$ H|$uHL$dH3 %(HugH([]H+u Hf1@3HD$HtH(qHgdfH<$H5B1H8~ff.UH d=$HHSHH8H(H<$dH%(HD$1LD$D$ H\$!HD$H9HxH5\$H9t vH=g^$bHHtZHD$HuH{HL$ HPt$ H|$QuHL$dH3 %(HugH([]H+u HBf1@HD$HtH(qHdfH;$H5A1H8H.ff.H;$H@SH~HH5}]$H9t st/H{tH;$H[DHA;$H[H ;$H57H81[fDATUSHG HcH umE1H=V$HV$u(GHx.uD cH H;t!HsHHuHtAD[]A\Hy:$AH5s6H8D[]A\@H1:$AH5T@H8D[]A\@BvH9$HHFH9]`$tS tUHHSH©uVHE9ƒ8tkH9$HH[]fHOHF98t'H9$n1tH=9$Hq9$G@Ha9$USHHH=%U$t+H;54U$HHU$u>fDH;pt2H H8uH9$H5*?H8H[]fDXuHxHU t1!ˉH[] 1H[]Hl8$H54H8%ff.UHHSHHHtHwEP1H[]Hu"H8$H5>H8H[]ÉUHHSHKHHt"H}Ht 1H[]f+HtԉH7$H5>H8LDAUATUSHHGtGH1L-m]$DAI9ltHHHu1fItHAt&HHuH7$H5L>AH8HD[]A\A]UH 8$HHSHH73HhH7$dH%(HD$X1LL$LD$D$ H\$H\$GHD$H9HxH5W$H9tHD$o@oH oP0H|$)D$ )L$0)T$@H9t!H|$ H=?X$:HHtbHuHxHL$ HT$ ˈt$ H|$-u!HL$XdH3 %(HHh[]H+uHf.1@HD$HtH( HHD$DHQ5$H5*=1H8rHA5$H5B;1H8RfDUH $6$HHSHHg1HhH@5$dH%(HD$X1LL$LD$D$ H\$H\$wHD$H9HxH56U$H9tHD$o@oH oP0H|$)D$ )L$0)T$@H9t!H|$ H=oV$jHHtbHuHxHL$ HT$ t$ H|$]u!HL$XdH3 %(HHh[]H+uHJf.1@HD$HtH( HHD$DH3$H5;1H8@rHq3$H5r91H8 RfDSHHtH{ t1[H3$H5:;H8Ҿ[ff.UHHSH[HHt"H}Hf t 1H[]f;HtԉH2$H5:H8\DUHHSHHHt"H}H t 1H[]f˿HtԉH32$H5:H8DUHHSH{HHt2HH9FH} t1H[]@KHuH1$H5L:H8lDSHFHH9 X$t'HƩuH{U t1[DHF0[HB1$H5 :H8[ff.SHFHH9W$t'H'ƩuH{ t1[DHF0[H0$H59H8蓼[ff.HHt H2fH0$HHUHSHHHFt6H51HduHE@HH[]ÐH5d1HAtHHH[]|@HEHHff.HHot HfH0$HHHHt HRfH/$HHHHt H"fH/$HHHHt HfH/$HHHH/t HfHQ/$HHHHt HfH!/$HHHHt HbfH.$HHATUSHtrHFIHHt&H5/H莼t:H5/H{tHHL[]A\酽D[HL]A\![HL]A\H.$H5K7H8[]A\ÐUHSHHtBH7HHu5DH H3Ht$HܺuCtHCH[]H-$HH56H815H1[]ff.AWAVAAUIATL%O$USHHHzL9t9LI螼Ņu(HCu;EuVH7-$HIEDI]HH[]A\A]A^A_fLHL1HIE@HPH,$H5^6H81dfUH D1$SHHHH)HPH--$dH%(HD$@1HD$ D$ Hl$ HD$8P1LL$ LD$+ZYHT$Ht$ HٿHT$Ht$(Hٿ3HT$H9tHt$0HٿwH=8N$3HH7HT$(Ht$ HKH}HD$0HHHHILL$HH|$0H/H|$ H/H|$(H/trt$HtHmu H1H\$8dH3%(HHH[]H|$ H/tuH|$(H/tbHl$0LD$Vu苶fD{ifDH|$ H/t@S2fDC뗐;fDH|$ H/t-H|$(H/t)H|$0H,H/"%DATUSHHH5&H@dH%(HD$81HL$ HT$D$耸HT$Ht$(HٿqHT$ Ht$0HٿRH=L$HH2H=K$IHZHD$0H}It$LL$LCHHHD$(HPqH|$(H/H|$0H/t$H1LH=%H軶I,$Hmu+HHD$蜴HD$DH|$(H/u耴1H\$8dH3%(H@[]A\Ð[sfDKTfDI,$tIHmHuDLHD$HD$aH|$(H/t%H|$0H/vlLfD۳fH|$(H/t%H|$0H/t*Hm/H觳1"蛳f苳ij@UH *$HHSHHL$HPH0($dH%(HD$@1HD$8D$ H\$8P1LL$ LD$dZY*HL$0H9lHyH5!H$H9t跶HL$0Ht$HHL$0HT$Ht$ HL$0HT$Ht$(H=GI$BHH&HD$(H{LL$HHHD$ HPHD$HpHD$0L@TgH|$H/tiH|$ H/t~H|$(H/tct$H|$0t#H+uHfDH|$H/u1HT$8dH3%(HHH[]˱f軱f諱xfDKHHD$0HtH(H|HL$0fH|$H/tEH|$ H/f\H|$H/teH|$ H/tJH|$(H/;&3fH%$H5+1H8Hf۰@UH '$HHSHH!HĀH%$dH%(HD$p1HD$D$ H\$H\$P1LL$LD$(误ZY5HL$H9gHyH5lE$H9tHL$oAoI oQ0H|$)D$0)L$@)T$PH9t&H|$0DlHL$Ht$ HHL$HT$Ht$(H=eF$`HHHD$(H{HL$0LD$HPHD$ HpqH|$ H/tdH|$(H/tIt$H|$+tH+uH9f1HT$hdH3%(HHx[] ffHHD$HtH(ḪHL$fH|$ H/n@H|$ H/t]H|$(H/^艮V@H"$H5,1H8踮5H"$H5(1H8蘮;t@SHH dH%(HD$1H\$HHu@H߾蓭HHtcHӭH+t=HL$dH3 %(uIH [HA"$H5 ,H81fDHHD$蓭HD$@1迭ff.@UHHHSH=D$HdH%(HD$1D$HtXHuHxHHT$t$Hu#HL$dH3 %(Hu$H[]fH+u Hf1HHHNff.ATIH=dC$UHSHdH%(HD$1D$>HtYHxLHL$HHUt$H5u!HT$dH3%(Hu"H[]A\DH+u H"f1WHH@HH@HH@AVAUATUHSЮHI1L-[<$E1HHI}t&H;O<$H0<$u <@H;Bt2H H:uH! $H5J&AH8謫[D]A\A]A^ËBuHA I9u[D]A\A]A^E1A@UH 4$$HHSHHHXH$dH%(HD$H1HD$@H\$H\$H\$H\$ H\$(H\$0H\$8H\$@PHD$@PHD$@PHD$@PHD$@PHD$@P1LL$@LD$8˩H0oHt$H9t1H SHt$H9t1H7Ht$H9t1HHt$ H9t1HHt$(H9t1H;Ht$0H9t1HOHt$@H9t/HFtpHH}trHt$8H9t+HFtGHuhH}t`1HL$HdH3 %(unHX[]H8xfHOH$H5'H8ffDH$H5'H8C$@H=t9$t"H;59$Hd9$u8H;pt2H H8uHHU$H5~#H81H@uHWtH!$H1ÐSH~HH5 ?$H9t tHH[fDH$H5H8j1[fDAWAAVAUATUHSHG AAA LuHLmI}*HD$H)M=f.AA<w0H$8t*IHI]AuC|.v舩u1/AA<w,H$8t`HL9aAuA<vff.ATUHHH5SH dH%(HD$1HT$HD$蔤H\$H>H{L%S8$L9tvLFujH{HVH5$H9t tuHHHH0@H{tHcE8HMH)H9K(ZHHHHL$dH3 %(HH []A\HCH5HPHF$H81輤@1@HsuH=H7$CHHtHx1zfDH=7$D$ HHtHL$ HU1Hxt$ H0H+jH1H$HHH0HH3HSH+ItJMLHLH;fD11HIHuHxfDHHL$ HULD$ 蔨HH1U|ff.HH=!:$1dH%(HD$1HGx3H$HtHL$dH3 %(uHDf1SH1H H=9$dH%(HD$1HT$џxeHD$HtKH(t-HH譼HL$dH3 %(u9H [HHD$CHD$@sHu@1_ff.@SH1H H=8$dH%(HD$1HT$!xeHD$HtKH(t-HHHL$dH3 %(u9H [HHD$蓝HD$@îHu@1话ff.@SH1H H=K8$dH%(HD$1HT$qxeHD$HtKH(t-HHMHL$dH3 %(u9H [HHD$HD$@Hu@1ff.@SH1H H=7$dH%(HD$1HT$xeHD$HtKH(t-HH蝺HL$dH3 %(u9H [HHD$3HD$@cHu@1Off.@UH1SHH=6$dH%(HD$1HH$HtaH+tKsPH}~HHtWHH= 1FHHj5$HL$dH3 %(Hu0H[]HhfD蛬HHuǐ[1肛fAT1UHSHH=(6$dH%(HD$1ILMx~H$Ht`H+tJSPHuL ~HxVH<$H:H<$H4$HL$dH3 %(Hu3H[]A\ÐH訚fD۫HHuĐ蛚1šfUHSH_HHtKH;HtoH=P 蛝HHt+HH+t-H[]fDHHHuH1[]HHD$HD$H[]H= ,HHA$H5H81fDSHHtEHHBH+tH薌u2HCHPHF#H51H81賌=HAT$PHsHkH+HtBHxmH<$HѓH<$HD"$HL$dH3 %(HuJH[]A\H8fDHHL1蠨HHxf1BfATIUH-$SHHH~dH%(HD$1H9t>H膋u2HCHPH6#H51H81裋=HAT$PHsHjH+HtBHxmH<$HH<$H4!$HL$dH3 %(HuJH[]A\H(fDHHL1萧HHxf 12fAVAUIATUH1SHPH=!$dH%(HD$H1Ld$D$HD$LH\$H]H+C1HT$H5`HMH|$HoHD$@D$HD$8HGHD$@HD$HD$ HD$(HD$0IHH=$謌HHt\HHI9tLHIuH}LHD$HKLD$Ht$H{tHm@1HL$HdH3 %(HHP[]A\A]A^fH#H51H8蘅fDH8kHHD#HH=$辋HH'eDHLHJHȄ;ff.ATIUH-_$SHHH~dH%(HD$1D$H9t^H.uRHCHPH#H5G1H81KHL$dH3 %(HH[]A\HH=$ȊHH|HT$HsHxZH+t$t$L踠tHmte1fH踃t$L茠ifHLHHHr@H+uHr2DH1^蔃@ATIUH-$SHHH~dH%(HD$1D$H9t^HΆuRHCHPH~#H51H81HL$dH3 %(HH[]A\HH=m$hHH|HT$HsHxH+t$t$LXtHmte1fHXt$L,ifHLH貢HHr@H+uH2DH14@ATIUH-$SHHH~dH%(HD$1D$H9t^HnuRHCHPH#H51H81苅HL$dH3 %(HH[]A\HH= $HH|HL$IT$HsHxH+tt$LtHmt`1@Ht$L̝ifHLHRHHr@H+uH貀2DH1螀Ԁ@ATIUH-?$SHHH~dH%(HD$1D$H9t^HuRHCHPH#H5'1H81+HL$dH3 %(HH[]A\HH=$訆HH|HL$IT$HsHxUsH+tt$L蓜tHmt`1@Ht$LlifHLHHHr@H+uHR2DH1>t@ATIUH-$SHHH~dH%(HD$1D$H9t^H讂uRHCHPH^#H51H81˂HL$dH3 %(HH[]A\HH=M$HHH|HL$IT$HsHx;H+tt$L3tHmt`1@H8~t$L ifHLH蒞HHr@H+uH}2DH1}~@ATIUH-$SHHH~dH%(HD$1D$H9t^HNuRHCHPH#H5g1H81kHL$dH3 %(HH[]A\HH=$HH|HL$IT$HsHx<H+tt$LәtHmt`1@H|t$L謙ifHLH2HHr@H+uH|2DH1~||@ATIUH-$SHHH~dH%(HD$1D$H9t^HuRHCHPH#H51H81 HL$dH3 %(HH[]A\HH=$舂HH|HL$IT$HsHxE]H+tt$LstHmt`1@Hx{t$LLifHLHқHHr@H+uH2{2DH1{T{@ATIUH-$SHHH~dH%(HD$1D$H9t^H~uRHCHPH>#H51H81~HL$dH3 %(HH[]A\HH=-$(HH|HL$IT$HsHx6H+tt$LtHmt`1@Hzt$LifHLHrHHr@H+uHy2DH1yy@ATIUH-_$SHHH~dH%(HD$1D$H9t^H.}uRHCHPH#H5G1H81K}HL$dH3 %(HH[]A\HH=$HH|HL$IT$HsHxvH+tt$L賕tHmt`1@Hxt$L茕ifHLHHHr@H+uHrx2DH1^xx@ATIUH-$SHHH~dH%(HD$1D$H9t^H{uRHCHPH~#H51H81{HL$dH3 %(HH[]A\HH=m$h~HH|HL$IT$HsHx>H+tt$LStHmt`1@HXwt$L,ifHLH貗HHr@H+uHw2DH1v4w@ATIUH- $SHHH~dH%(HD$1D$H9t^HnzuRHCHPH#H51H81zHL$dH3 %(HH[]A\HH= $}HH|HL$IT$HsHx;H+tt$LtHmt`1@Hut$L̒ifHLHRHHr@H+uHu2DH1uu@ATIUH-? $SHHH~dH%(HD$1D$H9t^HyuRHCHPH#H5'1H81+yHL$dH3 %(HH[]A\HH= ${HH|HL$IT$HsHx2H+tt$L蓑tHmt`1@Htt$LlifHLHHHr@H+uHRt2DH1>ttt@ATIUH- $SHHH~dH%(HD$1D$H9t^HwuRHCHPH^#H51H81wHL$dH3 %(HH[]A\HH=M $HzHH|HL$IT$HsHxH+tt$L3tHmt`1@H8st$L ifHLH蒓HHr@H+uHr2DH1rs@ATIUH- $SHHH~dH%(HD$1D$H9t^HNvuRHCHPH#H5g1H81kvHL$dH3 %(HH[]A\HH=$xHH|HL$IT$HsHx.H+tt$LӎtHmt`1@Hqt$L謎ifHLH2HHr@H+uHq2DH1~qq@ATIUH-$SHHH~dH%(HD$1D$H9t^HtuRHCHPH#H51H81 uHL$dH3 %(HH[]A\HH=$wHH|HL$IT$HsHx58H+tt$LstHmt`1@Hxpt$LLifHLHҐHHr@H+uH2p2DH1pTp@ATIUH-$SHHH~dH%(HD$1D$H9t^HsuRHCHPH>#H51H81sHL$dH3 %(HH[]A\HH=-$(vHH|HL$IT$HsHx%H+tt$LtHmt`1@Hot$LifHLHrHHr@H+uHn2DH1nn@AWAVAUATIUH1SHxH= $T$Ll$0LdH%(HD$h1D$(o6H\$0H@H+&H}L5$L9LqH}!H5b#H99q,H}H5#H9t qtD$H5$HnH#HHEH #MML$H9HL$hdH3 %(mHx[]A\A]A^A_H#H5H8mI/uLDHc@lhE u D$vt$(H談|$Hi#H%LD$jI.D$VLD$zjD$Ak[Jf>fD+H#HH5#HiIHHHH=$cI/IMM|$L谒+LHmf.@E{f. NE{KH #HHuL$D$~kD$L$Ht1LNisujIHK,HHH=#譊ImH0Li#=iHhHhLL$%Hmt hHmtH|$|{HhHhAVI1AUATUHSH H=$dH%(HD$1Ll$D$ LiH\$HH+H}L%#L9tTLkuHHEL%#I$HL$dH3 %(LfH []A\A]A^HE1HLL賮uOHmLd$DHg_xHHAE1uH=)#$nIHHD$HKHuI|$LD$ HPXHmtqH|$H/tVt$ HI,$uLg끐Hf?HHLbHHQffHffDHmtH|$H/fHffAVI1AUATUHSH H=a$dH%(HD$1Ll$D$ L|gH\$HH+H}L%#L9tTLiuHHEL%`#I$HL$dH3 %(LfH []A\A]A^HE1HLL蓬uOHmLd$DHe_vHHAE1uH= #lIHHD$HKHuI|$LD$ HPtHmtqH|$H/tVt$ HځI,$uLd끐Hd?HHLBHHQdfHdfDHmtH|$H/udHhddAWAVAUATI1USHH|$Hl$8H=5#HdH%(HD$x1D$$HD$(LeH\$8HH+1HL$(HT$0LH5ftmH|$0HGoHgHHtGLd$8M~ 8dHD$@SPHHHD$H+tH|$H/51@H\]ATH s#USHHHHH L%n#dH%(HD$1ILD$L$$[-H,$L9HH}H5u#H9t `H,$H{L%#L9tcL_uSHC*HPH#H51H81`HL$dH3 %(HWH []A\@H,$HHT$Ht$H衢t}H=f#abHHHD$HsH}HPOH+H|$H/ra[h@H#H5H8[f1EfH+uH1 ['lHH$HtH(HZH,$@HHLZ{H,$HH1HZ>H+tH|$H/51@HZZAVI1AUATUHSH0H=a#dH%(HD$(1Ll$ D$L|[H\$ HH+H}L%#L9tLL]u@HEH`#HHL$(dH3 %(/H0[]A\A]A^HE1HLL蛠u'Hm,HD$ DHYgH=9#4`IHuLHmH|$ H/uQY1ef{jHH 1DH=#_IH(HD$ HUIuI|$LL$HHLCTfHmH|$ H/t$Hu1LH=LZImI,$LHD$XHD$DHhXHHLxHH1[3XdfDH XBImtQI,$LfDLHD$WHD$JHmt.H|$ H/uWLHWJHWWff.AWAVI1AUIATUHSH(H=l#dH%(HD$1Ld$D$HD$L~X^H\$HhH+NH}L=#L9tVLZuJHEL%b#I$HL$dH3 %(LCH([]A\A]A^A_HE1HLL蓝+L;-l#t1Ht$HLpH=1#,]IHHT$HD$HKHuI|$HHHILL$HtH|$H/9HmH|$H/t$HrI,$u LU@E1HUfHHDHmH|$H/Ld$@LD$6lXHmtYLd$zHHLuHHaf+U'fDHUHUfDThfDHTFTfDHmt-H|$H/t,H|$HH/THTTTfDAVAUATUSH_HH dH%(HD$1D$ <}H==#1HT$qULd$MI,$H=#ZHHXLhHT$ HLt,LE1|uLm HE LHqHmIMLH?HL1H)ETHHi _THHH4#HH#H+IHmMLLM#I,$H,H3SIHEHH1kWI.HImHmuHRfHmR1HL$dH3 %(HH []A\A]A^f.LhRScIH4DHztlH#H5.1H8tRfHRpL1CMImu LQHAf.H#H51H8RHQHQ[HQ@LH+H1iQ|@kRHHHL#I,$HHL#I.IH+tvHMLH1UHf.LPI.&LKfDLPL#HPLPmLPGMLP11vff.AUIHH5<ATUSH8dH%(HD$(1HL$ HT$RtNH\$L%#H{L9t]LSuQHCHHPHe#H5H81S1HL$(dH3 %(5H8[]A\A]HHl$ H}L9tVH5G#BSuFHEHPH#H5[H81aSH+uHCO1z@HEHuH{薂u:H#HH+t:HmDHHD$NHD$-H#HH+uHHD$NHD$HLH=s#.oHHoLDHLL oHHN@ATH C#USHHHH;H0L%#dH%(HD$(1LL$ LD$D$ Ld$ ZM:Hl$ L9LH}H5#H9tQHl$ H{L%#L9tgLQuVHC5HPH:#H51H81QHL$(dH3 %(HH0[]A\Hl$ HHT$Ht$H@t|H=#THHHD$HL$ HsH}HPɔH+H|$H/t$ H|$ iSHmu HL1:H+uH1L$c^HHD$ HtH(HLHl$ f.HHLlHl$ HH1f.KLFfDH8L$H+tH|$H/CLzHLfDH#H51H88LLLff.ATH ##USHHHHH0L%~#dH%(HD$(1LL$ LD$D$ Ld$ JJHl$ L9\H}H5y#H9tOHl$ H{L%#L9tgLNuVHCEHPH#H51H81OHL$(dH3 %(HH0[]A\Hl$ HHT$Ht$H蠑H=a#\QHHHD$ HsH}LD$ HHHD$HPLH+H|$H/t$ H|$ %gFHmuH.JfD1*H+uH1J[HHD$ HtH(HIHl$ f.HHLBjHl$ HH1f.ICfDHI!H+tH|$H/CfIjHXIfDHٽ#H51H8ICfDH>!H+tH|$H/C>jH>fDH#H51H8><>ff.ATH #USHHHH+H0L%#dH%(HD$(1LL$ LD$D$ Ld$ J=JHl$ L9\H}H5 #H9tAHl$ H{L%#L9tgLzAuVHCEHPH*#H51H81AHL$(dH3 %(HH0[]A\Hl$ HHT$Ht$H0H=#CHHHD$ HsH}LD$ HHHD$HPH+H|$H/t$ H|$ YFHmuHHl$ H{L%#L9tgL>uVHCEHPHz#H51H81>HL$(dH3 %(HH0[]A\Hl$ HHT$Ht$H老H=A#HHHD$ HsH}LD$ HHHD$HP,H+H|$H/t$ H|$ UTFHmuH^7fD1*H+uH1@7HHHD$ HtH(H7Hl$ f.HHLrWHl$ HH1f.6CfDH6!H+tH|$H/C6jH6fDH #H5 1H86<6ff.ATH s#USHHHHH0L%#dH%(HD$(1LL$ LD$D$ Ld$ :5JHl$ L9\H}H5#H9t9Hl$ H{L%w#L9tgLj9uVHCEHPH#H51H819HL$(dH3 %(HH0[]A\Hl$ HHT$Ht$H |H=#;HHHD$ HsH}LD$ HHHD$HP,H+H|$H/t$ H|$ QFHmuH4fD1*H+uH143FHHD$ HtH(Hd4Hl$ f.HHLTHl$ HH1f.4CfDH4!H+tH|$H/C3jH3fDHY#H5Z1H84<3ff.ATH #USHHHHkH0L%N#dH%(HD$(1LL$ LD$D$ Ld$ 2JHl$ L9\H}H5I#H9t6Hl$ H{L%#L9tgL6uVHCEHPHj#H5Ӱ1H816HL$(dH3 %(HH0[]A\Hl$ HHT$Ht$HpyH=1#,9HHHD$ HsH}LD$ HHHD$HPlH+H|$H/t$ H|$ NFHmuH1fD1*H+uH11CHHD$ HtH(H1Hl$ f.HHLRHl$ HH1f.k1CfDHX1!H+tH|$H/C61jH(1fDH#H51H8X1<>1ff.ATH #USHHHHH0L%#dH%(HD$(1LL$ LD$D$ Ld$ /JHl$ L9\H}H5#H9t/4Hl$ H{L%#L9tgL 4uVHCEHPH#H5#1H81'4HL$(dH3 %(HH0[]A\Hl$ HHT$Ht$HvH=#|6HHHD$ HsH}LD$ HHHD$HPVH+H|$H/t$ H|$ ELFHmuHN/fD1*H+uH10/@HHD$ HtH(H/Hl$ f.HHLbOHl$ HH1f..CfDH.!H+tH|$H/C.jHx.fDH#H51H8.<.ff.ATH S#USHHHH H0L%#dH%(HD$(1LL$ LD$D$ Ld$ *-JHl$ L9\H}H5#H9t1Hl$ H{L%g#L9tgLZ1uVHCEHPH #H5s1H81w1HL$(dH3 %(HH0[]A\Hl$ HHT$Ht$HtH=#3HHHD$ HsH}LD$ HHHD$HP謑H+H|$H/t$ H|$ IFHmuH,fD1*H+uH1,#>HHD$ HtH(HT,Hl$ f.HHLLHl$ HH1f. ,CfDH+!H+tH|$H/C+jH+fDHI#H5J1H8+<+ff.ATH ##USHHHH[H0L%>#dH%(HD$(1LL$ LD$D$ Ld$ z*JHl$ L9\H}H59#H9t.Hl$ H{L%#L9tgL.uVHCEHPHZ#H5è1H81.HL$(dH3 %(HH0[]A\Hl$ HHT$Ht$H`qH=!#1HHHD$ HsH}LD$ HHHD$HP|H+H|$H/t$ H|$ FFHmuH)fD1*H+uH1)s;HHD$ HtH(H)Hl$ f.HHLJHl$ HH1f.[)CfDHH)!H+tH|$H/C&)jH)fDH#H51H8H)<.)ff.ATH #USHHHHH0L%#dH%(HD$(1LL$ LD$D$ Ld$ 'JHl$ L9\H}H5#H9t,Hl$ H{L%#L9tgL+uVHCEHPH#H51H81,HL$(dH3 %(HH0[]A\Hl$ HHT$Ht$HnH=q#l.HHHD$ HsH}LD$ HHHD$HP̕H+H|$H/t$ H|$ 5DFHmuH>'fD1*H+uH1 '8HHD$ HtH(H&Hl$ f.HHLRGHl$ HH1f.&CfDH&!H+tH|$H/Cv&jHh&fDH#H51H8&<~&ff.AUIHH5ATUSH(dH%(HD$1HL$HT$(tNH\$L%#H{L9teL)uYHC0HPHE#H5H81)E1HL$dH3 %(L<H([]A\A]HHl$H}L9t^H5#)uNHEHPHʙ#H53H819)H+{HE1%nHEH=#+IHtHUHsHxoH+tHm,H$H$fDHLH=c#EHHuhHLLEHHH+tHmDHP$$fAUIHH5,ATUSH(dH%(HD$1HL$HT$&tNH\$L%#H{L9teL'uYHC0HPHU#H5H81'E1HL$dH3 %(L<H([]A\A]HHl$H}L9t^H5/#*'uNHEHPHڗ#H5CH81I'H+{HE1$#nHEH=̹#)IHtHUHsHxnH+tHm,H"H"fDHLH=s#.CHHuhHLLCHHH+tHmDH`""fAUH C#ATUSHHHHH(L%#dH%(HD$1LL$LD$Ld$@!8Hl$L9H}H5#H9t%Hl$H{L-}#L9teLp%uTHCHPH #H51H81%HL$dH3 %(HH([]A\A]Hl$HLd$I|$L9H5#$u|ID$HPH#H5H81%H+u8H1 lfHi#H5jH8!f.1HH@H+tBH|$(H/uDH+tBH|$(H/t/H|$0H/h`fDHfDsʐHhAUIHH5LATUSH(dH%(HD$1HL$HT$D$H\$L%ʳ#H{L9L HC\HPHa#H5ʚE1H81 ~HEH=l#g#IH;HL$HUHsHx5dH+uHwHmuHht$L<9tI,$uLIfE1H\$dH3%(LH([]A\A]HHl$H}L9JH5#6HEu9HPHf#H5ϙH81H+{HE1nHLH=[#H\$L% #H{L9LHC\HPH#H5 E1H81 ~HEH=#IH;IMHUHsHxLD$xH+uHHmuHt$Lx0tI,$u LDE1H\$dH3%(LH([]A\A]HHl$H}L9JH5#6HEu9HPH#H5H81H+{HE1nHLH=#V3HHHLL23HHR!H+tHmHfHxAUIHH5\ATUSH(dH%(HD$1HL$HT$D$H\$L%ڨ#H{L9LHC\HPHq#H5ڏE1H81~HEH=|#wIH;IMHUHsHxLD$H+uHHmuHtt$LH.tI,$u LUDE1H\$dH3%(LH([]A\A]HHl$H}L9JH5˧#6HEu9HPHv#H5ߎH81H+{HE1nHLH=k#&1HHHLL1HHR!H+tHmHWfHHAUIHH5,ATUSH(dH%(HD$1HL$HT$D$H\$L%#H{L9LHC\HPHA#H5E1H81~HEH=L#GIH;IMHUHsHxLD$aH+uHSHmuHDt$L,tI,$u L%DE1H\$dH3%(LH([]A\A]HHl$H}L9JH5#6HEu9HPHF#H5H81H+{HE1nHLH=;#.HHHLL.HHR!H+tHmH'fHQAUIHH5~ATUSH(dH%(HD$1HL$HT$D$H\$L%z#H{L9LeHC\HPH#H5zE1H81}~HEH=#IH;IMHUHsHxLD$QH+uH# HmuH t$L)tI,$u L DE1H\$dH3%(LH([]A\A]HHl$H}L9JH5k#f6HEu9HPH#H5H81H+{HE1` nHLH= #,HHHLL,HHR!H+tHmH fH ! AUIHH5|ATUSH(dH%(HD$1HL$HT$D$~H\$L%J#H{L9L5HC\HPH#H5JE1H81M~HEH=#IH;IMHUHsHxLD$qH+uH HmuH t$L'tI,$u L DE1H\$dH3%(LH([]A\A]HHl$H}L9JH5;#66HEu9HPH~#H5OH81UH+{HE10 nHLH=۠#*HHHLLr*HHR!H+tHmH fH AUIHH5zATUSH(dH%(HD$1HL$HT$D$N H\$L%#H{L9L HC\HPH}#H5E1H81 ~HEH=#IH;IMHUHsHxLD$AH+uHHmuHt$L%tI,$u LDE1H\$dH3%(LH([]A\A]HHl$H}L9JH5 # 6HEu9HPH|#H5H81% H+{HE1nHLH=#f(HHHLLB(HHR!H+tHmHfHAUIHH5lxATUSH(dH%(HD$1HL$HT$D$ H\$L%#H{L9L HC\HPH{#H5E1H81 ~HEH=# IH;IMHUHsHxLD$}H+uHHmuHt$LX#tI,$u LeDE1H\$dH3%(LH([]A\A]HHl$H}L9JH5ۜ# 6HEu9HPHz#H5H81 H+{HE1nHLH={#6&HHHLL&HHR!H+tHmHgfHXAUIHH5H\$L% #H{L9LHC\HPHe#H5 oE1H81 ~HEH=#IH;IMHUHsHxLD$dH+uHHmuHt$Lx tI,$u LDE1H\$dH3%(LH([]A\A]HHl$H}L9JH5#6HEu9HPHd#H5nH81H+{HE1nHLH=#VHHHLL2HHR!H+tHmHfHxAUIHH5\`ATUSH(dH%(HD$1HL$HT$D$H\$L%څ#H{L9LHC\HPHqc#H5lE1H81~HEH=|#wIH;IMHUHsHxLD$QoH+uHHmuHtt$LH tI,$u LUDE1H\$dH3%(LH([]A\A]HHl$H}L9JH5˄#6HEu9HPHvb#H5kH81H+{HE1nHLH=k#&HHHLLHHR!H+tHmHWfHHAUI1ATUSHH(H=##dH%(HD$1HT$D$ AHl$HHmH{L%#L9tPLuDHCSL%$a#I$HL$dH3 %(LH([]A\A]DHI}L9tsH5,#'ucIEL%`#I$H+uH8fDH(C[HH$E1YIEH=#IHHMIUHsHxLD$ H+Imtxt$ HI,$uLLHH=C# IHwE1$f.HHL HH9L8{H(dH+tImL[fH1AUI1ATUSHH(H=Ӆ#dH%(HD$1HT$D$ Hl$HHmH{L%E#L9tPL8uDHCSL%^#I$HL$dH3 %(LH([]A\A]DHI}L9tsH5܀#ucIEL%s^#I$H+uHfDHC HH$E1YIEH=d#_IHHMIUHsHxLD$ 9jH+Imtxt$ H<I,$uLELHH=# IHwE1$f.HHL HH9L{HdH+tImL[fHAUI1ATUSHH(H=#dH%(HD$1HT$D$ Hl$HHmH{L%~#L9tPLuDHCSL%\#I$HL$dH3 %(LH([]A\A]DHI}L9tsH5~#ucIEL%#\#I$H+uHfDHCHH$E1YIEH=~#IHHMIUHsHxLD$ hH+Imtxt$ HI,$uLLHH=}#^IHwE1$f.HHL2HH9L{HdH+tImLg[fHXAUI1ATUSHH(H=3#dH%(HD$1HT$D$ QHl$HHmH{L%|#L9tPLuDHCSL%4Z#I$HL$dH3 %(LH([]A\A]DHI}L9tsH5<|#7ucIEL%Y#I$H+uHHfDH8CkHH$E1YIEH={#IHHMIUHsHxLD$ 虞H+Imtxt$ HI,$uLLHH=S{#IHwE1$f.HHLHH9LH{H8dH+tImL[fHAUH t[#SHHHHTH(H-X#dH%(HD$1LD$Hl$tuHD$H9tsHxH5x#H9tVt:HD$H{HpNHHL$dH3 %(H([]DHW#H5]H8f1@H=1~#1HT$exH|$Ht'H|$H/vHD$lf+HHD$Hu1_fAUHATUSHHw{#HW#H|#H2W#H|#HHm|#HV#HW|#-HcW#H5SHC`HPH|#HH@(H|#H|#HV#HP`HHR@H|#(Hs|#HHH5Sg(HX|#HHV#H=x#Hy#Hw#HDv#Ht#`H=v#LH=us#p8H=u#\$H=JWIH H=y#HH5RFH=_w#LH5R(ImH=RYHHH5RHHHHH w#1HQH5RCHH(H5RHQHz#HHmH+H=URIHHLFR1H RRHXRH5VRHz#HUH=VIH=H_z#LH5QHxImwH=Q*IHH5QHoHHH=|T#I1H q#HQH5QMHz#HI,$*ImHmH=0Y#kHHHu#H5OHHu#H2t#H5VHH t#HH;H;1HH3 4ff.@LIAWH_Cy 5AVAUATUHHSHHQHL I1HFI)u4J HtfIHHHu[]A\A]A^A_HALeM JLQL)IH lHHGHHHLHHHHI)fDHtJLeInIS;\I)I]xEcIIGwIJ,Id uI&ILIIHHHHHHH)f.LLIJTIIK I vI7I I IH͕PMB HHH@zZH*HH)@H&H H ~H8H͕PMB LHH@zZH*HI)III \HSZ/DHH HH Hiʚ;H)DI H$ HHHvHH$HH)@InIDIHu@HHHHƤ~HHH)L@IH4ׂCHHHHi@BH)LH[]A\A]A^A_H HЄK8HHHrN H)HH)fDH3"[3/#HHH%HH)fHCxqZ| HHHHHi H)yfHaw̫HHHHiH)MDH(\(HHHHHHHH)@HKY8m4HHH Hi'H)DHS㥛 HHHHHiH)fHHHH TH!HH)fDHBzՔHHHHi€H)mDHWx/e9HHo#H3HH)AHHHIHHIH) HHHIHHIH)Hv>HH ISZ/DLH HIH Hiʚ;I)HwH4ׂCLHHHi@BI)H eH$ LHHvHH$HI)DHHHqIu@LHHIHƤ~HHI)aHaw̫LHHHiI)>HЄK8LHHrN H)HI)HKY8m4LHH Hi'I)IS㥛 LHHIHHiI)H3"[3/#LHHH%HI)HBzՔLHHHi€I)zHLHH TH!HI)PI(\(LHHIHHHHI)!HWx/e9LHHo#H3HI)IIGwILHHIHd HHI)IS;\LHHIH]xEcHHI)ICxqZ| LHHIHHi I)kff.AWHIAVAUATUSHH_Cy 5HHHIHBI)HwNE11H)tJJJII9ut 1MH[H]A\A]A^A_f.HIGwILdLHHHHd HHHHc I9H I)ICt L)exH<%HyDHN$L)L,I wSIIIGI1 IHLLHHHIHH)fII 6 I IH͕PMB LHH@zZH*HIHЄK8I)LHHrN H)HHI)fMuE1LHMSL9Iu@LHL4wIIIbI(HHHHHHH)f.IIBLIKLH9IJ I vII I 3IH͕PMB HHH@zZH*HH)fH<HHuE1II&I HSZ/DHH HH Hiʚ;H)DI H$ HHHvHH$HH)@IITIHHHIHƤ~HHH)I6H4ׂCHHHHi@BH)cHM)HH HJfH3"[3/#HHH%HH) fH(\(HHHHHHHH)@HKY8m4HHH Hi'H)DHS㥛 HHHHHiH)HЄK8HHHrN H)HH)VfDHCxqZ| HHHHHi H))fHaw̫HHHHiH)DHHHH TH!HH)fDHBzՔHHHHi€H)DHWx/e9HHo#H3HH)yfHIGwIHHHHd HHH)BfHS;\HHHH]xEcHHH)fIXvbII /ISZ/DLH HIH Hiʚ;IHaw̫I)LHHHiHI)IH4ׂCLHCxqZ| HHHi@BII)LHHHHHi HI)I H$ LHHvHH$HIHI)LHH TH!HHI)[I,IIYIu@LHHIHƤ~HHIH͕PMB I)LHH@zZH*HHI)fDAHЄK8LHHrN H)HIH3"[3/#I)LHHH%HHI)xHaw̫LHHHiIHBzՔI)LHHHi€HI)1ICxqZ| LHHIHHi IHKY8m4I)LHH Hi'HI)ALE1HLHSZ/DHH TH!HII)LH HHH Hiʚ;HI)xIS㥛 LH(\(HHIHHiII)LHHHHHHHHI)HBzՔLHHHi€IH4ׂCI)LHHHi@BHI)I(\(LHHIHHIHHHI)LHHHHHI)HKY8m4LHS㥛 HH Hi'II)LHHHHHiHI)6H3"[3/#LHHH%HIH$ I)LHHvHH$HHI)HWx/e9LHu@HHo#H3HII)LHHHHƤ~HHHI)IIGwILHS;\HHIHd HHII)LHHHH]xEcHHHI)"IS;\LHHIH]xEcHHIHWx/e9I)LHHo#H3HHI)fDHrH9s H1@H)HHvCAfDJHPH9tJJIL9vuݸHAVHE1AUIv8uATIUH-2H&SIIH#NJ#@E1HJ$LAIIHILHH?ILII!MHILHIHHIHMLHH!LL)JIIM9u[]A\A]A^fE1LfIHtDHE1H&#fHJ$LAEIHIJIIM9uf1ff.fLJ1ItHIJHHJIIuHf.³fO#Su!HGH>weH=hN#[O#@H)#A91H HbH;膸H;1HݔpH3 [ҴHK)#A=1H THH;8H;1Hה"H3 腴0Hc HVH&HGHXLIHGHHG HHG(Hc HGKH9wBH6P^Cy H7HHH?H@H)HH@HOHHMfHHG%K#ff.Hc HGKHHGHXLIHGHHG HHG(Hc H&HGHXLIHGHHG HHGKHG(@Hc H HGHXLIHGHHG HHGKHG(@F=wj@udFNIHGI΍DHHHH)HGHHG HHG(1HWfHHGHGG$GGG(G,Hc HN1H9wH7ff.Hc 1H9w HwÐHc 1H H9w Hwff.f1ww$ff.1wwf1wwf1ww(ff.1ww,ff. w#wt w %H#AWHAVIHcAUIATIUSHH,ЉT$HH> ILII!I!*HHMAI1I)MIIHIH"LIILHM)HI"MHLHHH)HH"HHHuH9wHH)HHH1IH)MQIHHIH"HIHLLHL)HH"HHHIIH)IH"1HHHIH9v Mt fDH)HHtm@HHMTIHI H)IH HIHMLI L)IH 1HHLuH9vHufDHq7L=%HD$Mt IFLT$LLAׅT$LLAׅxMI<H1IH!I!HIE1HI)AHoHIHH"LHIIII)IH"LIILHM)HI"1MMHuL9wI)MHIIIII)IH"LIHLHL)HI"IHLHHH)HH"E1HAHIHH9vHtH)HMITHL9FIItMDIdMIII I)IH IILLH L)HI E1LAIIHH9vHtH)IHIIII I)IH LIHLH L)HI I@L@Hu L9%LH)fDIHHIH(HIHLLHL)HH(HHHIIH)IH(%DHIH I)HH IHLHH H)HH HHHHH9vHtHH)HHHHHHH(LHIHHI)HH(LHHIIH)IH(HHLu H9mH)HbT$LHD$III!4H1[]A\A]A^A_IHrH[!HGL=HD$H LFHIHH(LHIIII)IH(IILLHL)HI(E1LAIIHH9vHtH)IHIHIHI)HH(LHHIIH)IH(HIHLHL)HI(IfT$LLHD$ЅImIE1I! I1II)MqIHIH"LIILHM)HI"MHMHHI)HH"LAIEIuH9wH)IHHIHIH)IH"HIHMIL)II"IILLHL)HI"IMHHL9vHtI)MHHIHIH)IH"HIHLHL)HI"IHLHHH)HH"HIHuH9wH)IHHHHHH)HH"HHHHHH)HH"HHHHHH)HH"1H@HHHH9v Ht @HH)IM$I Ml$M\$ID$M9NHI|$IL$It$I$$MIII I)IH IILLH L)HI E1LAIIHH9vHtH)IHHIHI H)IH HIHLH L)HI 1IMHuL9wI)MHHHHH H)HH HHHHH H)HH 1HIHHH9vHtH)IHHHHH H)HH HHHHH H)HH 1HHHHH9bHYZ@IHIH(LIILHM)HI(MHMHHI)HH(LAIEIHH9vHtH)IHHIHIH)IH(HIHMIL)II(IILLHL)HI(IMHuL9wI)MHHIHIH)IH(HIHLHL)HI(IHLHHH)HH(HIHuH9wH)IHHHHHH)HH(HHHHHH)HH(HHHHHH)HH(1H@HHH9fDH[]A\A]A^A_@vff.AWHcHpAVIAUIATIUSHH,HHr HLIH!I!&HHHI1I)MIHIHIH"LIIMIM)II"MILLHL)HI"ILHuL9wLH)HHH1IH)MIHIH"HIILLHM)HH"LHHIIH)IH"1HHHIH9v Mt fDH)HHtm@HHHWIII I)IH LIHMLI L)IH 1HHLuH9vHufDMMEMILD$LHL H6LLFHHFDL $L $LD$t3MDLIAI!IyH1[]A\A]A^A_f.IHIH(HIILLHM)HH(LHHIIH)IH(III I)IH IILLH L)HI ILHHL9vHtLH)HHLIHIHIH(LIHLHL)HI(IHLIIH)IH(HHLu H95H)H*DD1L+IL (I1HI!H!@IE1HI)AHHIHH"LHIIII)IH"LIILHM)HI"1MMHuL9wMI)HHHIHI)HLH"HHHIHIH)IH"HIHLHL)HI"1ILHHL9vHtLH)MITHL9IILHHMIII I)IH IILLH L)HI IMHHL9vHtMI)HHIHI H)IHH HIHLLH L)HH E1HAHIu H9%H)HfHIHH(LHIIII)IH(IILLHL)HI(IMHHL9vHtMI)HHHIHI)HLH(HHHIHIH)IH(HIHLHL)HI(1ILH9L901fDLLAхIIE1I!DI1I)MHHHH"LHIHHI)HH"LHHIIH)IH"1HHLuH9wH)HLHIIII)IH"LIILLHM)HH"LHIIII)IH"1LIHIH9vMtH)IHHIHIH)IH"HIILLHM)HH"LHHIIH)IH"1HHLuH9wH)HHHIHIH)IH"HIILLHM)HH"LHIHHI)HH"LAHEIHH9vHtH)HII $I MD$It$IT$M9wHMD$It$I$$I|$HMIII I)IH IILLLH L)HH E1HAHIHH9vHtH)HLHIII I)IH LIIMLI M)IH 1LILuH9wH)IHHIHI H)IH HIHMLI L)IH 1HHHIH9vMtH)HHHIHI H)IH HIILLH M)HH LJDLLL$^L /"L$1fDHHHH(LHIHHI)HH(LHHIIH)IH(1HHHIH9vMtH)HLHIIII)IH(LIILLHM)HH(LHIIII)IH(1LILuH9wH)IHHIHIH)IH(HIILLHM)HH(LHHIIH)IH(1HHLuH9wH)HHHIHIH)IH(HIILLHM)HH(LHIHHI)HH(LAHEIuH9lmH[]A\A]A^A_@>f.@AWAVAUATUSHt$HT$HL$HBH-vE1E11HE1I#NJHHH!HD$HH!H\$H]vH!H!HT$HD$I1II)H|$FIHIH"LIHMIL)II"IILLHL)HI"IMHuL9wI)MLH%puIILH%XuIHLMHH#NJLHE1LAM9LLE1H9v1L9A@IH)IIHIJHIL9T$HD$J NHD$NLH)I9LCHH)H9HBLH)I9L,*IBHH%tH|$-I1II)H|$sIHIH"LIHMIL)II"IILLHL)HI"E1IALIHL9vHtLH)HH%HIxI HIII I)IH IILLH L)HI IMHHL9vHtMI)HHIHI H)IH HIHLH L)HI 1L@IHHH9vHtH)IHIHHH H)HH HHHHH H)HH HHHHH9vHtHH)HIHHH H)HH HHHHH H)HH HHHHH9tHklfDHIHH(LHIIII)IH(IILLHL)HI(IMHuL9wMI)HHHIHI)HH(LHHIIH)IH(HIHLHL)HI(1L@IHuH9wH)IHIHHHH)HH(HHHHHH)HH(HHHHHH)HH(HHHHH9vHtHH)HIHHHH)HH(HHHHHH)HH(HHHHHH)HH(-fDLd$HD$(II9Lt$8Hl$ Dl$4 MI9DHLuH\$XdH3%(Hh[]A\A]A^A_HIHH(HHIHHI)HH(LHIHHI)HH(1LIHdvAWHAVAUATUSHhT$ HHH|$dH%(H\$X1HHHt$0HIHD$H9sTHLt$Dl$ DLH9s8DLHZuH\$XdH3%(Hh[]A\A]A^A_HcD$ H|$0HUHH‰赹HL$HL$HD$HL$8H!IIHL$(I!HD$LHH{}fIHIH"HIILHM)HI"MHLHHH)HH"E1HAHIuH9wHH)HiHHHmI1I)MIHIHIH"LIIMIM)II"MILLHL)HI"ILHuL9wLH)HHH1IH)MIHIH(HIILHM)HI(MHLHHH)HH(DLIHtHIH I)HH LHIIHI I)IH 1LHLu H9H)HHHHH I1HI)MHHHH(LHIHHI)HH(LHIHHI)HH(1L@IHHH9vHtH)IE1H|$0LD$(=DIE1HI)AMwHIHH"LHIIII)IH"LIILHM)HI"1MMHuL9wMI)HHHIHI)HH"LHHIIH)IH"HIHLHL)HI"1L@IHHH9vHtH)IHIHHHH)HH"HHHHHH)HH"HHHHHH)HH"HHHHH9vHtHH)HIHHHH)HH"HHHHHH)HH"HHHHHH)HH"HHHu H9w DHH)IM8IMpM9BHIxI HIII I)IH IILLH L)HI IMHuL9wMI)HHIHI H)IH HIHLH L)HI 1L@IHuH9wH)IHIHHH H)HH HHHHH H)HH HHHHH9vHtHH)HIHHH H)HH HHHHH H)HH HHHHH9HwxfIII I)IH IILLH L)HI ILHHL9vHtLH)HH+IHIHIH(LIHLHL)HI(IHLHHH)HH(E1HAHIu H9HH)H=@HHHH"LHIHHI)HH"LHIHHI)HH"1HIHH(LHIIII)IH(IILLHL)HI(IMHHL9vHtMI)HHHIHI)HH(LHHIIH)IH(HIHLHL)HI(1L@IHuH9wH)IHIHHHH)HH(HHHHHH)HH(HHHHHH)HH(HHHuH9wHH)HIHHHH)HH(HHHHHH)HH(HHHHHH)HH( fDHL$HL$(H|$tHD$T$ H|$@Ll$HD$8IH9D$HD$PHL$8E1IL\$HI!HD$HD$L\$IHHHHD$ IE1HI)AMHIHH"LHIIII)IH"LIILHM)HI"1MMHuL9wMI)1ILH)HLELH)L9LFHD$HHIE1HI)AMHIHH"LHIIII)IH"LIILHM)HI"MALEIuL9wLH)1ILH)HLELH)L9LFHD$HHHI1II)MIHIH"LIHLHL)HI"IHLHHH)HH"E1HAHIHH9vHtH)H1HHH)HHEHH)H9HFHD$HHHI1HI)MHHHH"LHHIIH)IH"HIHLHL)HI"1ILHHL9vHtLH)1HHH)HHEHH)H9HFHD$K|ONIAL9L$ }IHD$K41KLJ@u{HH}pD$ YH݈_7HEH}HVUUUUUUUHHHHHH?H)HRH)HHAHHLb@HL)@Ld$MHD$D$ @ ID$  Lp+fDHȇ tH}~HEHx UHD$H8H蠇HD$D$ @x) HXHiH艇q)NaNHH}J HHI艂}3H?HcH>DL0.M~HfAH4M)LIVfH@0H9uHI舃HI"H?HcH>MH#NJI9IЃ0AGHHI)MLIOHIGwIHHHHB0AHd HI)HLLyHS;\HHHHB0H]xEcHI)MZLIOHWx/e9HH3B0AHo#HI)H"LLyHu@HHHHB0HƤ~HI)MLIOH͕PMB HH*B0AH@zZHI)HLLyHЄK8HH)B0HrN HI)MuLIOH3"[3/#HH%B0AHHI)H=LLyH$ HH$B0HvHHI)MLIOHHH!B0AH THI)HLLyHSZ/DH HHH B0Hiʚ;I)MLIOHaw̫HHB0HiAI)HfLLyHBzՔHHB0HiҀI)M6LIOH4ׂCHHB0Hi@BAI)HLLyHCxqZ| HHHHB0HiҠI)MLIOHKY8m4HH B0Hi'AI)HLLyHS㥛 HHHHB0HiI)MfLIOH(\(HHHHB0AHHHI)H)LLyHHHB0HHI)MA0AGI_E/LEIIIGwIId IWx/e9Io#Iu@IƤ~H͕PMB H@zZ{fDHE(J4HHHIHB0IֈH)Hu %.HS;\HHHHB0H]xEcHH)Hu %.HIH3B0IӈH)H' HHHIHB0IшH)HHHH*B0HшH)HHЄK8HHH)B0HrN HH)HdH3"[3/#HHH%B0HHH)HH$ HHH$B0HvHHH)HHHHH!B0H THH)HHSZ/DHH HH B0Hiʚ;H)H7Haw̫HHHB0HiH)HHBzՔHHHB0HiҀH)HH4ׂCHHHB0Hi@BH)HhHCxqZ| HHHHB0HiҠH)HHKY8m4HHH B0Hi'H)HHS㥛 HHHHB0HiH)HH(\(HHHHB0HHHH)HCHHHHB0HHH)HH0IHX@@0ItHf% HL;d$u D$${D$ Hk EHD$HL) C+HIy1*H7HcH>fH#NJHkI9Ѓ0CHHI)HPLHHIGwIHHHHB0EHd HI)HLHMHS;\HHHHB0EH]xEcHI)HLHiHWx/e9HH3B0Ho#HI)HLHMHu@HHHHB0EHƤ~HI)H\LHiH͕PMB HH*B0H@zZHI)H%LHMHЄK8HH)B0EHrN HI)HLHiH3"[3/#HH%B0HHI)HLHMH$ HH$B0EHvHHI)H~LHiHHH!B0H THI)HGLHMHSZ/DH HHH B0Hiʚ;EI)HLHiHaw̫HHB0HiI)HLHMHBzՔHHB0HiҀEI)HLHiH4ׂCHHB0Hi@BI)H~LHMHCxqZ| HHHHB0HiҠEI)HFLHiHKY8m4HH B0Hi'I)HLHMHS㥛 HHHHB0HiEI)HLHiH(\(HHHHB0HHHI)HLHuHHHB0EHHI)HqA0FH^D&D$ t%HHD$H|$H8HH)HĘ[]A\A]A^A_@%.fD%.fD%.]fD%.fD%.fD%.fD%.AfD%.fD%.fD%.nfD%."fD%.fD%.fD%.>fD%.fD%.fDC-I)Ls-$H1HcH>DHO,&I^tHIMs% H2HcH>Lp @-HHXwHHwSHInfinityCHHCMH#NJH9IЃ0AFHHH)MHIHIGwIHHHHB0AFHd HH)MtHINHS;\HHHHB0AH]xEcHH)H5HLqHWx/e9HH3B0Ho#HH)MHINHu@HHHHB0AHƤ~HH)HHLqH͕PMB HH*B0H@zZHH)MHINHЄK8HH)B0AHrN HH)HPHLqH3"[3/#HH%B0HHH)MHINH$ HH$B0AHvHHH)HHLqHHH!B0H THH)MHINHSZ/DH HHH B0Hiʚ;AH)HrHLqHaw̫HHB0HiH)MBHINHBzՔHHB0HiҀAH)HHLqH4ׂCHHB0Hi@BH)MHINHCxqZ| HHHHB0HiҠAH)HHLqHKY8m4HH B0Hi'H)MyHINHS㥛 HHHHB0HiAH)HAHLqH(\(HHHHB0HHHH)MHIvHHHB0AHHH)H0FHNH}HHIGwIHId IWx/e9Io#Iu@IƤ~I͕PMB I@zZyHE(H HHHHHB0I׈H)Hu %.HS;\HHHHB0H]xEcHH)Hu %.HIH3B0IՈH)HHHHIHB0I҈H)H@HIH*B0IЈH)HHЄK8HHH)B0HrN HH)HH3"[3/#HHH%B0HHH)HpH$ HHH$B0HvHHH)H$HHHH!B0H THH)HHSZ/DHH HH B0Hiʚ;H)HHaw̫HHHB0HiH)HJHBzՔHHHB0HiҀH)HH4ׂCHHHB0Hi@BH)HHCxqZ| HHHHB0HiҠH)HwHKY8m4HHH B0Hi'H)H2HS㥛 HHHHB0HiH)H H(\(HHHHB0HHHH)H HHHHB0HHH)HHS 0HHp@HH% INHI^LII9HS㥛 LHHHB0HiI)I9H(\(LHHHB0HHHI)I9JHLHHB0HHI)M9A0AFE>HuHIIGwIIEId IS;\I]xEcHD$(HWx/e9@HHHIHB0I҈H)M9bHI^HHIHB0IAH)I9'HLsHH3B0Ho#HH)M9 HI^Hu@HHHB0AHƤ~HH)I9 HLsH͕PMB HH*B0H@zZHH)M9W HI^HЄK8HH)B0AHrN HH)I9 HLsH3"[3/#HH%B0HHH)M9 HI^H$ HH$B0AHvHHH)I9 HLsHHH!B0H THH)M99 HI^HSZ/DH HH B0Hiʚ;AH)I9 HLsHaw̫HHB0HiH)M9 HI^HBzՔHHB0HiҀAH)I9s HLsH4ׂCHHB0Hi@BH)M93 HI^HCxqZ| HHHB0HiҠAH)I9 HLsHKY8m4HH B0Hi'H)M9 HI^HS㥛 HHHB0HiAH)I9i HLsH(\(HHHB0HHHH)M9HM~HHHB0AHHH)M9W0HI_AGAH"HE(LsH I95LAE.Lt$(#HH#NJI9HЃ0CHHI)HLHHIGwIHHHHB0CHd HI)HsLHKHS;\HHHHB0H]xEcHI)H5LHYHWx/e9HH3B0Ho#HI)HLHKHu@HHHHB0HƤ~HI)HLHYH͕PMB HH*B0H@zZHI)HLHKHЄK8HH)B0HrN HI)HRLHYH3"[3/#HH%B0HHI)HLHKH$ HH$B0HvHHI)HLHYHHH!B0H THI)HLHKHSZ/DH HHH B0Hiʚ;I)HvLHYHaw̫HHB0HiI)HFLHKHBzՔHHB0HiҀI)HLHYH4ׂCHHB0Hi@BI)HLHKHCxqZ| HHHHB0HiҠI)HLHYHKY8m4HH B0Hi'I)HLHKHS㥛 HHHHB0HiI)HHLHYH(\(HHHHB0HHHI)H LHKHHHB0HHI)HA0AHYD!HuH]IIGwIId IS;\IWx/e9Io#Iu@IƤ~I͕PMB H@zZqHE(H HHHIHB0IֈH)Hu %.HHHIHB0H]xEcHH)Hu %.HIH3B0IӈH)HFHHHIHB0IшH)HHIH*B0H׈H)HHЄK8HHH)B0HrN HH)HH3"[3/#HHH%B0HHH)H7H$ HHH$B0HvHHH)HHHHH!B0H THH)HHSZ/DHH HH B0Hiʚ;H)HVHaw̫HHHB0HiH)HHBzՔHHHB0HiҀH)HH4ׂCHHHB0Hi@BH)HHCxqZ| HHHHB0HiҠH)H>HKY8m4HHH B0Hi'H)HHS㥛 HHHHB0HiH)HH(\(HHHHB0HHHH)HbHHHHB0HHH)HH0HHX@HH% @M~AF.f.LsC.S%.fD%.SfD%.fD%.fD%.wfD%..fD%.fD%.fD%._fD%.fD%.fD%.~fD%.2fD%.fD%.fD%.ofDI^AF.fLsC.EI^AF.fLsC.I^AF.fLsC.?I^AF.fLsC.I^AF.rfLsC.+I^AF.fLsC.I^AF.TfLsC. I^AF.fLsC.HLH+EH'HQHfDB0HHLHH+uH9%.fD%.fD%.>fD%.fD%.fD%.gfD%."fD%.fD%.fD%.OfD%.fD%.fD%.kfD%.fD%.fD%.fDHD$ HX+ufDsNaNHfDIAE.HHHQHHaHHHSHLbLnLLeLLL LLZHLLLLVLLLvLHLI^I}IFLIHIFM^ HD$xIFMVHD$pIFMFHD$hIFI~HD$`IFIvHD$XIFINHD$PIFHD$HIF HD$@IF HD$8IF HD$0IF HD$(IFH$IFH$M9.H#NJI9Dȃ0IAIL$H$I)M9] HIGwILHHHB0AHd HI)L;l$x LLL$xHS;\HHHB0AH]xEcHI)L;l$p LLL$pHWx/e9HH3B0AHo#HI)L;l$h LLL$hHu@HHHB0AHƤ~HI)L;l$`^ LLL$`H͕PMB HH*B0AH@zZHI)L;l$X LLL$XHЄK8HH)B0AHrN HI)L;l$PLLL$PH3"[3/#HH%B0AHHI)L;l$H^LLL$HH$ HH$B0AHvHHI)L;l$@LLL$@HHH!B0AH THI)L;l$8 LLL$8HSZ/DH HH B0Hiʚ;AI)L;l$0LLL$0Haw̫HHB0HiAI)L;l$(TLLL$(HBzՔHHB0HiҀAI)M9H4ׂCLHHB0Hi@BAI)M9HCxqZ| LHHHB0HiҠAI)M9\HKY8m4LHH B0Hi'AI)#IFM^ H\$xMHD$pIFMV HD$hIFMFHD$`IFI~HD$XIFIvHD$PIFINHD$HIFI^HD$@IF HD$8IF HD$0IF IHD$(1IFM^ H\$pHD$hIFMV HD$`IFMF HD$XIFI~HD$PIFIvHD$HIFINHD$@IFI^HD$8IF HD$0IF Lt$xIHD$(IFM^ H\$hHD$`IFMV HD$XIFMF HD$PIFI~ HD$HIFIvHD$@IFINHD$8IFI^HD$0IF Lt$pIHD$(IFM^ H\$`HD$XIFMV HD$PIFMF HD$HIFI~ HD$@IFIv HD$8IFINHD$0IFI^Lt$hIHD$(~IFM^H\$XHD$PIFMV HD$HIFMF HD$@IFI~ HD$8IFIv HD$0IFIN I^Lt$`IHD$(XIFM^H\$PHD$HIFMVHD$@IFMF HD$8IFI~ HD$0IFIv IN I^Lt$XI HD$(7IFM^H\$HHD$@IFMVHD$8IFMFHD$0IFI~ Iv IN Lt$PI^ HD$(I IFM^H\$@HD$8IFMVHD$0IFMFI~Iv Lt$HIN I^ HD$(I IFM^H\$8HD$0IFMVMFI~Lt$@IvIN HD$(I^ I IFM^H\$0MVMFLt$8I~IvHD$(INI^ I M^MVH\$(MFI~Lt$0IvINI^ IMVMFILt$(I~IvINI^I!MFI~IMIvINI^I2I~IvIMINI^I@IvINHMI^IVHHLvHHHH{HHH.HH&LAE.IH@HAE.LIHRfHAE.HLIHfDIAE.HHLIHMAE.IHHLIH3MAE.MIHHLIHDL\$(MMIAE.HHLIHHD$(AE.L\$(MMIHD$0HHLIHfDHD$0AE.HD$8HD$(L\$(MMIHD$0HHLIH@HNHIMH HcH>fHD$8AE.HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIHf.HD$@AE.HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIHRHD$HAE.HD$PHD$@HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIHHD$H}HVUUUUUUUHHHHHH?H)HRH)HHAHHIHD$PAE.HD$XHD$HHD$PHD$@HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIHHD$XAE.HD$`HD$PHD$XHD$HHD$PHD$@HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIH4HD$`AE.HD$hHD$XHD$`HD$PHD$XHD$HHD$PHD$@HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIH}HD$hAE.HD$pHD$`HD$hHD$XHD$`HD$PHD$XHD$HHD$PHD$@HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIHHD$HHHD$pAE.HD$xHD$hHD$pHD$`HD$hHD$XHD$`HD$PHD$XHD$HHD$PHD$@HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIHHD$xAE.IHD$pHD$xHD$hHD$pHD$`HD$hHD$XHD$`HD$PHD$XHD$HHD$PHD$@HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0HHLIHHD$pIH\$xAE.HD$xHD$hHD$pHD$`HD$hHD$XHD$`HD$PHD$XHD$HHD$PHD$@HD$HHD$8HD$@HD$0HD$8HD$(L\$(MMIHD$0H$HHH$H$IEH$$AWAVI1AUATUSHHHHT$HL$dH%(HD$81WWHCHCE&A+t}1A-Ant ANAF-H4$H HGGfWGHYHGHG HG(ycB><XO,DWG>HQĀv ^HPKhH$Eըt I@ uLbL$$Cj@0I@IUDB9@,u3HCHCH:HC H1HC(ID$H$Al$I@.fߍPv @%?ID$H$A$CAl$1@H|$dH3<%(H[]A\A]A^ fC.E<v @^HV@knH$G1Du=Mt$CzL4$A$CCAT$IHHDPl0u1HMD H LH"HE"tȃtL$$A,$@WFP?C1fH1fDIl$IEH,$AT$DPc}H HIHCA$"4+L$$A,$6@SV@8\8TSVJ?ASVJ?%SD Mg)$)$@%Hl$`L|$@HDHI訴HD$@HD$HHIF8M>MtH\$HI9H @HD$XH$dH3 %(H[]A\A]A^A_@AHB,AF< >A@A@gM~AM$Hc I9HCM=HHCAHHD$Hx=Hx=LL$@Hl$`HL$HHT$MHLL$ HvL9|$pLL$  HT$HL$MHHHD$ H@HD$ fD@%Hl$`HT$HA HmQHD$hHPH<HHD$XHD$H#d H9D$HHL$LYPՁ>< 6LL\$E1ASIMHDQ@HHDQuHL)HL$HT$@<.HH+D$H)IIF 8IF(8E1LIMLHD$XLAVARHL$(LT$8L\$0Y^HD$@Hxo L\$ LT$(HHD$XGAVLLIARHL$(ML読XZH|$M"EFI~D$?I)DD$uH|$XHL$?HIHD$@IHt- |$?DD$IHD$X,LLL$@AzA<A@M1<vI?LMIL)LA=MLLHL$ MLL$LT$K<LD$LL$LD$LT$HL$ MMt.L11MtAt@4HI9uHLL9uHt3K 11MtAt@4HI9uHLH9uHD$XH\$@H\$@L|$HD 1A Hl$`.DIFAHHc H9H9dHl$`I+F\HD$^H{@HL$HLD$@1HHD$H6HD$@Ld$I\$f1ArՁt IĀ EIII5Hl$`HD$HD$Lׁ"HD$H|$"DHMnHH+D$H)IMc@I9HCL)HD$fDHD$H|$"#DIFLxMHCHHkHD$7H7uvHl$L\$@HL$HHHl$`ML\$L)HHHT$ L;|$pL\$HT$ HL$MHHHD$HHD$\Hl$`HHT$@HHK9fDL HD$Hl$`HT$@HHGYd @AUIպATIUHSHHdH%(HD$81HHt5HLHLTHL$8dH3 %(uHH[]A\A]fM1 AWAAVIAUIATL%Ԧ"US1HDHHtDAsM 1HcLHL x89}4HcH)IHu1M9t AFIFD)H[]A\A]A^A_H[]A\A]A^A_ff.AWH#"AAVIAUAATLgUnSHHɹ[LDH|$1fL$$HHtJDDtM 1HcLHL6 xJ9}FHcH)IHuH<$ID$]I9HDfH+D$H[]A\A]A^A_DH[]A\A]A^A_@AWH"AAVIAUATDfUSH(HLDHH|$1Lh[D$ f8LLl$EIDD!tMtL$ u>D$ M 1IcLHL* xND9}IHcA)IHHuH|$ID$]I9HDfH+D$H([]A\A]A^A_fDH([]A\A]A^A_@UHSHdH%(HD$1HH$Ht@HHH1HV"HD$dH3%(u)H[]HH=_x SHHdH%(HD$1H"H$Ht9HH5a1 H"HD$dH3%(u,H[@H~"H=#H fHHHu1SHHl"HHtH1H HH[1Hf.HHHHu% "1ff.fHHHu %"1DUHHSHHHHuH"HtH[]EHH[]fHHHuHr %"fD1ff.fU0SHH9=="HM=5"HHuvHHA"HHtbHHHHu> "HC(Ht7HHCHCHCHk H[]fDHC(H"1HH[]H="@SHHH="(Ht H[DH߾HD$vWHD$H[ff.AUHATIԺUSHHHLo(HuHHH4"HC(Ht3HK LHH Hk H9H[]A\A]Lk(HT9H|9HC1HCHCA $H[]A\A]ff.@AUHATIԺUSHHHLo(Hu8HH_"HC(HtHk H"9H[]A\A]fLk(H8H8HC1HCHCA $H[]A\A]ff.@AUHATIԺUHSHHHHu5Lo(HL"HtH] HE(H[]A\A]@Lm(H9] }H7H8HE1HEHEA $H[]A\A]ff.HHHu\UHSHHH"H1Ht-HC Hs(HHHk HHC(7H[]f1ff.fUHHSHHHHu0H(H"HtHE(H] H[]f.1H9] H[]Hw(HWH|t=H~(HHuw1f.H HuHH9u1HGHHH?DHH4PI@HHIHHHIHHHH9t1AWAVAUATULSHXII@MHHT$IHD$ IHt$N<H|$(L)J?N>HD$M9I9WLLkKL HHLHHH9uHt$H IMLHVH|$I.H-Hl$ HHHIfHHL9uHT$Ht$HMHL+MH|$(HXK&H[]A\A]A^A_$-@Ht$HLL\$0Nl;L\$0HHJLL\$H,Ht$LLMD$LD$@LLLLHL)HDIHD$8HD$N8LLT$0,HD$8LHLD$@H|$IHLM0HHCHHLT$0L\$HHt-HHHH9uH MILLHHD$0LLt$HHK<> ,HHL^.Hl$ HD$0HHHDIEIL9uHLHt$MMHT$HrH|$(HH+H|$HHHX[]A\A]A^A_-@HLkHL-HHLf.HHH9uHT$H MILHHXHM[]A\A]A^A_.SHu"AU1H yHH;H;1HH3 ff.fAWHAVHAUATUSH(Ht$L$H9EH IH $IIHHHcH=3HH9HH9tHHHHH9HGHHHHHIH\HgHD$HILHLGLLL9H|$LL)L;t$HIH~Ht$N4HL1HLHNEHt$LLL9Od5MDLHHL9uHLLLD$NLD$Ht$LLLD$^LD$fI$IM9uH|$HLJNLO "H$HT$HLHrgL"@HH97HH9$1H(H[]A\A]A^A_fDHHH9HELw"H1l"Lc"H|$X"fD1HHZtȺHLYtH|$HYH1"@HLL MUHt$LL">0H"L"fAWIIAVAUMATULSHhH|$dH%(HD$X1HI9wbIULD$PLLLLHH H|$IT-HHH"f.I@MHIHD$IN4M)J6HD$M9M9LLkKL HHLHHH9uLT$(HT$MIL\$ H LHL\$ LT$(:HD$JTHLT$J<0%HT$LT$HHHIHHI9uHLIMLLH_H|$JT%He%HLL\$ Nl3Ht$HL)L\$ Ht$HJLL\$@%MD$LLLLD$(LHLHHDHD$ K7HHD$8$HD$LHLD$(J<0HD$ MH|$0HLL\$@HCLT$HIHD$ LKLHHHf.HHH9uHT$8Ht$IMH HLT$@L\$(L\$(HD$0HLJ<0H$H|$0HHf&Hl$HD$ LT$@HHHIEIL9uHLMMLLHfD1Ht$XdH34%(Hh[]A\A]A^A_HLLB'LLkKLHHLfHHH9uLT$(H IML\$ LHt$#H|$HH#H|$0HHX%HfSHm"An1H IHH;uH;1H_H3 mff.fHSHH_H9wHHHu2[DHHHHHuHHH9w H[HAWLAVAUATUSHH_Cy 5HHIHJ HIAI)tnfDHH9uHHHuf.J<=IIu[1]A\A]A^A_LHJ9 t[]A\A]A^A_fDAHkL\M)I IIrIEIHLHHHHI)fDHtH9sHkHJLAIFIS;\H)I]xEcIIGwIId H,vI&IDIIHHHHHHH)f.LLJ9TIIIJ I vI1I GI IH͕PMB HHH@zZH*HH){II I gI!H͕PMB LHH@zZH*HI)pIvI6I HSZ/DHH HH Hiʚ;H)DI H$ HHHvHH$HH)@I^I4IHu@HHHHƤ~HHH)L@I>H4ׂCHHHHi@BH)[]A\A]A^A_Iv>II ISZ/DLH HIH Hiʚ;I)IhH4ׂCLHHHi@BI)I VH$ LHHvHH$HI)DIIIbIu@LHHIHƤ~HHI)QHCxqZ| HHHHHi H)fHaw̫HHHHiH)DHЄK8HHHrN H)HH)~fDH3"[3/#HHH%HH)QH(\(HHHHHHHH)$@HKY8m4HHH Hi'H)DHS㥛 HHHHHiH)HHHH TH!HH)fDHBzՔHHHHi€H)}DHWx/e9HHo#H3HH)QHHHIHHIH)0HHHIHHIH)Haw̫LHHHiI)=HЄK8LHHrN H)HI)H3"[3/#LHHH%HI)HKY8m4LHH Hi'I)IS㥛 LHHIHHiI)HBzՔLHHHi€I)yHLHH TH!HI)OI(\(LHHIHHHHI) HWx/e9LHHo#H3HI)IIGwILHHIHd HHI)IS;\LHHIH]xEcHHI)ICxqZ| LHHIHHi I)jf.HOLNHGL9tGIHVL^(M)H(M~HHLI)LHHM@HHx6H(Hv(H HH9t(H HH9uHHu1fDH9H9u4HVHF(HLHWHG(H|u1H@Ht3HWHFHWHFLBHHH9t.1I9Dff.1Dff.fH9ȃttPȃ)u,LFHF(NLLGHG(J|u/1Muȃ@ڍDMtT8uEHGHVASHGHVCHHLJH9t3؍SI9[Nf1DD)ÐACS[AWHAVHAUATUSH8H<$H9H< IIH{LrHII^HHHH9IHBI8HHtIw3H4$MM1LH,H8H[]A\A]A^A_f.HIIINHHȺHHHuHHHaHHH9HHhH^HH2H4$HMMHLzH!"@@HHHHfIIMFIvWIIMNILHHHLHHHHH9HLHHH\HHHHHHH9H 8DIIM^IIFHLpIHHHPH!H׾HT$L\$(LL$ LD$HL$HT$HHHHHHH9L\$(LL$ HLD$HL$LHHutHHH9L40LHHuQLHH9N0LHHu.LHH9wxJ<|LغHIHtH1"$LHIHsHHHH0;ff.AWHAVHAUATUSH8H<$H9wH< IIHcLjHII]HHHH9IHBI8QHHt5HI9w:H4$1MMLHu H1"H8H[]A\A]A^A_fH9IIIMH9HȺHHHgHHHSHHH9HHcHHHeH4$MMHLHAHK"BfDHHHH딐IIMEI9vXIIMMI9LHHHLHH|HHH9HDLHHHLHHH8HHH9fH 8DIEHLhI9HHLXI9HHHPH9HHT$L\$(LL$ LD$HL$#HT$HHHHHHH9L\$(LL$ HLD$HL$LHHulHHH9L0LHHuILHH9w{M,LHHu*LHH9w\J<(LHIHtLغHIHtHHHHPH1"HO(HG H#NJ1H9HAHHH)H#NJH1H9vXHHGHH;DsQH;H;1H;HHHG1HGHH;rH;spH;H;s1H;H HHGDH;H; s1H;|HHHGDH;s7H;s~1H;H@1H;HHHG1H;HHHG1H;H F1H;H.1H;Hff.AUAATIUHSHHH(dH%(HD$1 uH5|"H9s m1LcHD H#NJH9HGHH)H#NJH7H9vOHHCHH;+sHH;H;ݿ/1H;ƿHUD1HCHH;rH;H;ݿH;s1H;ȿH HHCHD$dH3%("H[]A\A]f.H;YH;\ s1H;DHH;swH;p1H;YHuDHL$D$|$HHC(u H?{"HC ^1H;H#1H;H 1H;H 1H;oH1H;Hff.tsHLH; HsvH; H; (H; xH; H4ׂCHHHHi@BJf.H<uqHy1HDH; H; ̽H; ϽH; QH$ HHHvHH$HDHH; !H; HA1Hf.Hf.HHHHtrfH; 9H; H; HWx/e9HHHo#H3HH)HHAHHu H`Ht EHHH; 1I(\(HHHIHHHHf.H; qIIGwIHHHIHd HHEH; H͕PMB HHH@zZH*HHHHHHHH#NJ1H9E1HH)HHIS㥛 HHHIHHiH3"[3/#HHHH%H|HBzՔHHHHi€\H; ݺHKY8m4HHH Hi'/H; غsGISZ/DHH HIH Hiʚ;Haw̫HHHHiHHHH TH!HIu@HHHIHƤ~HHIS;\HHHIH]xEcHH\HЄK8HHHrN H)H5ICxqZ| HHHIHHi ff.HE@H9=vcH9=\v"H9=C1H9=,DH9=AH9=D 1H9=(fH9=Iv'H9=(w~H9=/v_1H9= H9=9v7H9= v^1H9= fD1H9=1H9=1H9=1H9= 1H9=HGHGHff.@HGHH+HGHH+HWHG(HDff.H HH9smH ַH9s1H H9H H9HB 1HfHH9H H9sGH H9HB1HH;=s7HH9H H9sH H9HB1HH H9sHE(HHtHHH9uH[]@[uDH[]DSHdH%(HD$1 uHH5m"H9w HD$dH3%(u:H[@H(HL$D$|$HC(uHm"HC SH dH%(HD$1H95xm"HG D$HM5dm"H9t H t'H9JHL$dH3 %(uAH [HT$NuЋt$H߉D$ *#D$ @HT$_ff.@ATUHSHHdH%(HD$1H95l"HG D$HMl"H9t I tFH9YHE(HHt@HHH9uHL$dH3 %(uDH[]A\fHT$HsuDHT$Hut$L;"1fHGHW(HTH9v^H9v%H9f1H9OHjfDH9aH9d vI1H9LH7H9qv?H9PH9Sv1H9;H HHHPHHGH9Iv7H90vv1H9H@1H9HfD1H9HfD1H9H 1H9oHg1H9HOUSHdH%(HD$1H~HcHH)H;w|$HD$dH3%(ZH[]fHHHO(H6P^Cy HHH?HH)HHCH)tHL1H|HI4HHDHHtH|tH9i"HHE HM5i"H9tE H9H]HHUHE(H|HEHE uH5i"H9w ~H(HL$D$|$HE(uHTi"HE fDHT$HcnfDHT$HVUHSHdH%(HD$1H~ H6H9w?u@uHUHE(H|HD$dH3%(H[]fDHHO(H6P^Cy HHH?H)HHHBH)HfDHHtH|tH9Wh"HHE HM5Hh"H9tE tmH9~HT$HH]H(HM1H)fHLU1H|HI4HYHT$H$@ Ð Јff.''' @Ȁ' Ð Јff.SHHdH%(HD$1HG( u H5lf"H9w .HCHCHHD$dH3%(u6H[ÐHL$HD$Y|$HC(uHf"HS lff.AWAVAUIATUSHxD&dH%(HD$h1AHnLN(HL4HM~O9MMu+Ht$hdH34%(L^Hx[]A\A]A^A_DLCHSI HHHL$Ht$H$H_Cy 5LHHHHHALH)HDHSH5gLH)H$IKD1H1HtIHfAMI@A6@HLD$KtL\$PD$ 0LD$H$Ht$L\$HHD$@I:HL$HHI9HHL$0Ld$ H6P^Cy HHH?H)HHHBHLH)HHLH8Hl$8D$ L4LL$HLD$0M~ ЈD$ HD$(LO9y@HSHLH H$IH@Ld$ LHl$8vfLLLL$nAL$Hl$8A0IDd$ Ld$ LD$0]AUIH6P^Cy ATIUSHHHH H5b"HIHHH?H)HHBI)HjH9HMH9t H9HUHkHHKM~H Hs(HEJ HH Hx%H#NJHK(fHHHuH[]A\A]H9HHMH9pHSHBHKLH=tI $ULHHWH~%Hw(HHuj1 H HuHH9u1HHH4PH@HHHHHHHHHHH9tH1ft1@ ff.Hw(HW1H|tHWHxuHHH=vH_Cy 5HHHHHHBH)H1H4σfDff.ATAUSHHdH%(HD$1 u H5`"H9w @D HC HCHCHD$dH3%(uAH[]A\DH(HL$D$`|$HC(u H`"HC pATAUHSHHdH%(HD$1 u H5_"H9w GHCHCHCD eHD$dH3%(uFH[]A\f.H(HL$D$証|$HC(u H^_"HC 6@t@8tu"@l@[L¾ff.uAu%LFHv(J|uHʾ2ƃ2@uLBHR(J|t1ƺHH|ff.HH1_ff.@UHHSH1HdH%(HD$1HT$D$T$u`Hy@HH9uuSMHHL$dH3 %(u7H[]@HHكHEfH UH'SHHHdH%(HD$1HT$D$:H‹D$u&H9w*H\$dH3%(u'H[@  FfDSHHdH%(HD$1Ht$D$bT$u)HH9w'H\$dH3%(u$H[Ð  ff.H9UHSHHH~HC H9= \" HHM5\"H9t tPH9cE ȈHEHu(HCHEH{H{(HCHEHH[]@Hػt H}HPfDfDA u 1U1HHSHHA H߃U(Hu|H[]USHH>DAE A uH1[]H@uGAtQAHLHH߃U(HuH[]fDAHDAWAVAUMATIUHSHH8dH%(H$(1utFMLHHH$(dH3%(zH8[]A\A]A^A_@HRHNH9HMHIHL MLL$HI@IG(Iv(HD$HiH|$ HNMtHHI9uHFIHHt$LD$ML9 _Y"LHC HM5PY"H9t H9BLK(1H|$ MSDHILD$HI9wHS  LA$2E ȈIOINHKH~&K|tf.I|u HHuHsH95X"HM5X"H9t H9HmKLLHHo-f.IMeDHIw(I~(IHLD$I9vzeIM uLL$H{(W" LL$LD$LK( LLC LDLHݷ#LHU {IfDLϾ蓴IHIOMFIF(Iw(HLHLL$LL$:HD$HLD$MfDIF(IW(H#NJLK(HH"HHIH?IHII!IHH%IHHHHHIHv8uHHHHH!H)IAJILD$HS  LDLH蝶8LD$*LD$IDfDHH|$H'IHIH?HLHHH#NJH!HLH%RHH#NJLHHHLIv8uHMLII)L\$(LI#NJL!HHT$HD$ HFH"HIHIIH#NJH?HHH!LLHH%HH#NJLHHHLIv8uHMLII)H#NJH!L\$0H<H|$(HHHT$HbHHH#NJHIHH?HHH!LHHH%HH#NJLHHHHHv8uHILII)H#NJH!LT$8HHT$HD$(HFHbLI#NJHHLHHHH?IHIHM!IH%ILHHHHHHv8uHHHHL!H)HHL$8HD$0LH褲rLHHS  1HLLHLL$6LL$H9UHSHHHNHG H9 pS"HHM5bS"H9t tPH9cEH{( ЈHEHu(HCHEHKHCHEH0H[]@[tHMfDó搸f.UHSHHjHHtBHx(HEHu(H蹺U ЈHEHCHEHCHEHCHH[]fDSHt#[DSHt3[DUSHH*Ht H[]ff.ut u  ubf @ATIUHSHu2u-HH*1LƉ1b[]A\HHL:t[]A\f.AUMATIUHSHHu9u4HH1LƉ1H[]A\A]@MHHLtAMH[]A\A]fAUATIUSHx7A $dH%(HD$h1˃8t&)H|$hdH3<%(IHx[]A\A]؉I, ]@ t"tʼn9tR)t fDLuID$I9EtQLvgHGIT$H~H-HH)01(fHD$IE H@@HT$HHD$ IE(H|$HHD$(ID$@4$Ht$0HD$@ID$ L$0HD$PID$(HD$8HD$XHD$}ff.fUHHHSH81HƉ1H[]HxHNdH%(HD$h1HGHL$8HNHD$HG@HL$@HNHD$HGHL$HHN HD$HG HL$PHN(HD$ HG(H$HD$(Ht$0HL$X@D$0xHT$hdH3%(uHx~ff.UHHHSH(1HƉ1H[]LN(LVK|HAUIATIUHSHH~HH6P^Cy HHHH?HH)HHCH)ID$ HHH9QM"HHM5FM"H9tA$ H9iI|$(MHLLUA$ A$LmHEMl$I\$ID$H[]A\A]HHLutLULM({@HLŬAWAAVIAUMATUHSHHHRL$L$dH%(H$1H$D$ 0HD$HH$HD$xHFHD$(HD$0HD$8HD$@@HDŽ$D$PHD$XHD$`HD$hHD$pH9\FIHHE1L}HU(J|t{H $HUH}H HrH9 HHHIIHLH9LD$ H)LHLD\$LL$LD$LL$LD$L|$8D\$IALHCIAL9~IHALIL9=K"LHC HM5K"H9{ LH9AIyHL$LS(IQ(Hu(IA8H9HL$LL}HK(I:JH|Hhu.IGH,@HUH|uHHIHuL9=MJ"LHS HM5>J"H9t H9}AL{u AT$ D$H<)uH<$$u @HD$ uH|$HI"D$ u H|$ I"H$dH3%(RHĨ[]A\A]A^A_IAfIL~HE1/fDLHD\$LL$sD\$LL$YHMJHHfLV(tHHII)M9HEL9~-L`HSHC(L+eH|>AM M9EH[]A\A]A^A_fDN(HGt HH+HGH2AMH[]A\A]A^A_fD'LHHqHEHH+EHCAM@H[]A\A]A^A_f.LLHH)RAEM)HKL{ƒAUHS(H|*L9e  AE7@j@ JM9LcfDLHL)}$LcIHcw:E$H\HcH>fD1HwNYAE€AUEM @PHSAEHC(H|0V1HtH{(HsHtBHSH5B"HBH9HMHC H9t H9HC(HHCHZ1HHtju@Ht[w-HtHHH{(HHHHHHH)D61H!AM6LHPHS?LHĠH{(AEff.t u9AVAUATIUHSH u HsHEH9 []A\A]A^V(H6DH)HILk}$Iw}E$HWHcH>f1ItSH{(HsHHHEH9C~+1HELHHCHHCFfDA$€A$M2 @A$$@I{uH{(pA$f1IKfMtk?Mt[/1MH{(HMt4HHHHHHH)u@A $kHSHC(HHH HLLHC9@IHHII1HxLHLLfDHH9tHff.@Hcf.AUIATIUHSHHdH%(HD$1 u H52?"H9w 4LLHH3HD$dH3%(uCH[]A\A]H(HL$D$|$HC(uH>"HC +ff.HcD@7AUIATIUSHHHdH%(HD$81HHnHHLLAu$%HD$8dH3%(u!HH[]A\A]fHھLwIHH1IHLLff.IH1I蹾HLLf.ATI1UHH1SHcLHH[]A\f.ATI1UHՉ1SH$LHH[]A\BfAUIATUHSHHHdH%(HD$81IL1L1HϿHLHAu(%HD$8dH3%(u%HH[]A\A]fDHھHAUATIULSHHdH%(HD$1Ll$D$MLLHZD$ EAuHD$dH3%(uH[]A\A]ÐHHifAWIAVAUATUHSHHLF(LNK|IHHNH9H)H6P^Cy HHOHHH?H)HIHBH)HIH9L9-i;"LHG HM5Z;"H9t H9H}(LLLiUILm ЈEHCHE fDLHHE1AIHL[]A\A]A^A_@LLHI$UfDH~(LLLL9-:"LIHM5:"HC H9O tTH9ALH.LxISLKLC(@LfDLH=DLVLN(K|AVAUMATIUHSHFHHH)Hd HNHH9wLtIwClfDAUЀAEA$M$@AU1ItI|$(It$ZHtHIT$H58"HBH9HMID$ H9tA$ H9ID$(HID$L%`1IA$Mt7zAUUA$Mt_I|$(HMuA$AMF1M-HHHHHHH)A$LL蹗IT$'LL,I|$(f.AVAUIATMUHS2H@uSHRHy_HKHC(H|HAHLHHHtHEAu;[]A\A]A^fLLHHOuLHH[]A\A]A^uDA}$wAE$H҂HcH>1Ht]H}(HuJHtCHUH5r6"HBH9HMHE H9tE H9/HE(HHEHE6A$€A$H @A$D[H]1A\1A]A^ѸHPuH}(EEA$1H HxEHcE1HH}(HH:HHHHHHH)mLHUHULHɓAWAVAUATIUSH(uH Ѓt"H(LL¾[]A\A]A^A_@H~HuL}MuHFH9EH54"ID$ H9sHMsH9tA$ *H9HE(L5^xIHD$HC(HD$HEHHH\$HD$N,H=w1NHD$N DLIHHHHLHILH)IHHHHI)LIHHHtHHI9uID$(IJ(HEHL9XJ<H|$H\$HD$H|$HH|$LLL;w=L;viL;v\1L;vAE1IHxHL$ ILLIHHHHLHILH)IHHHH)HHHt HvN4DIL9uMT$(HD$HHL$M4zH(\(IILHHHIIHHHH)H^L*LHHHHHI)LIH/uH[M_L9}ILl$KtDGHIHHHHH)HHHvHHDLLHL$LD$+LD$HL$H([]A\A]A^A_f.LLHL$LD$[HL$LD$HD$HD$L;ts`L;tKL;tL;t L;lt,L;ot L;UtL;tL;tL;jtXIL9ID$A$ЃA$HEHHHtI|tID$H9*0"HM"0"HID$ H9t H9LHL$HL$H([]HA\A]A^A_1L;Rs1L;sL;ds zL;+siL;zsXLLHL$(HL$cLLHL$~HL$I@ tHgH_HDfDуu6Hmzu#HzuHOHW(HXzH|u`HZzuHAzuHOHW(HEzH|tHGHGH4zHH;FH zHMHGHGHyHH;FHzHMff.fAVAUATIUSHLnHMH2H9uIH6P^Cy HMuHHHH?HH)HHCH)HG HHH9-"HHM5-"H9t: YH9~,HHL$oHL$uH[]A\A]A^fLqIH%1L9m~HE(JHL$H([]HA\A]A^A_#1L;i1L;jkL;i ZL;iIL;i8LLHL$舄HL$cLLHL$ޅHL$I@AWAVIAUIATMUHSHHdH%(H$1H$D$HD$HH$HD$xH$D$ 0HD$(HD$0HD$8HD$@@D$P0HD$XHD$`HD$hHD$p@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@H$uPuKH{ut_LLH$dH3%(H[]A\A]A^A_fDMLHHL$tfDHt$HID$uIL9|HHL9sEhMGHL)HL$H;E}%H\$ LHHtLHH豺H\$PLLHHtWLH茺HT$LHL$LLT$Ht<$MMH$LL҃LL@D$ uH|$H<#"D$ u H|$ (#"D$PuH|$x#"D$Pu H|$P#"$uH$""$?H$"",LIHHL$DLHLJAVIAUMATIUHSHHdH%(HD$1D$uDu?H{utSLL#HD$dH3%(H[]A\A]A^fMLHHLtfDHT$H1IIVHH9rD$uEueHLڍQHcLHH]HNgmH9HO;LLLHob1%}H9HLI\$w/fLHL訇AUIATIUSHHutHHHx)H9HLL¾[]A\A]fDHH9LtELL豷HHL[H]A\A]fLLLD$LD$t/H[]A\A]@LHLL[]A\A]KHHLL[]A\A]AVIAUMATIUHSHHdH%(HD$1D$uDu?H{utSLLHD$dH3%(H[]A\A]A^fMLHHLtfDHHt$SHD$uIH9|HH9EucHx&HLLHLLBjDLHLOLLHLH91@LHLhAWAVAUATIUSH(uH Ѓt"H(LL¾[]A\A]A^A_餾@H~HuL}MuHFH9EH5"ID$ H9sHMsH9tA$ JH9HE(L5NbIHD$HC(HD$HEHH.H\$HD$N,H=ta1NHD$N DLIHHHHLHILH)IHHHHI)LIHHH9tHHI9uID$(IJ(HEHL9XJ<H|$H\$HD$H|$HH|$LLL;`]L;`L;`|1L;`DpA1II @IILLIHHHHLHILH)IHHHH)HHH9t H_J,ICIcI9uH׃HIIIHHH(\(HH)LHIHHIoH_D)L HH4L-fHIIHHHHH)HHH#IHL9uHD$ML$(MWI,HCI9ILl$KlH @GHIHHHHH)HHHvHHDLLHL$LD$yLD$HL$H([]A\A]A^A_f.LLHL$LD$+{HL$LD$HD$HD$L;^s`L;^KL;^L;}^ L;<^,L;?^ tL;%^cL;l^L;O^L;:^8K,HCIL9ID$A$փA4$H@HHtI|tID$H9"HM"HID$ H9t H9LHL$训HL$H([]HA\A]A^A_铰1L;"]1L;]kL;4] ZL;\IL;J]8LLHL$wHL$cLLHL$NyHL$I@AVIAUMATIUHSHu t(MLHHL贽t8[]A\A]A^MM"[L]LLA\A]A^@MMHHL[]A\A]A^8UHSLHdH%(HD$1LD$D$2D$ AuHD$dH3%(uH[]fDHھHq~AVIAUMATIUHSHu t(MLHHL褼t@[]A\A]A^MM[L]LLA\A]A^f.MMHHL[]A\A]A^ff.UHSLHdH%(HD$1LD$D$"D$ AuHD$dH3%(uH[]fDHھHQ}AWLGZAVAUATIUHSHH^HNHT$ H~(H_Cy 5L dH%(H$x1H$H$D$/HFH$HD$0HF Ƅ$0H$H$pH$H$pHDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$ @L-YH$(H$hH$XHHHDŽ$hH$HHƄ$0HDŽ$8HDŽ$@HJTHDŽ$HHHDŽ$PHƄ$PHFHH\$8H)L$xHDŽ$pHE1I0HXH9vcH9XH9pXzH9[XMv~L=XuDH~HvXH)I$HJD1I4HH9wH9zXH9UXpH9XXH9CXL=XfDLID$ H=R"HM5J"H9tA$ ZH9L$pI|$(LLlIT$(A$$ID$HzHID$HH9H;XW2H;;We1H;$WHDHH|$@L|$pID$H<$LD$dHcd HXLIHD$xHD$HHD$pHD$ DŽ$HH$HT$PHD$HH'1HPHcٍqHIH?HHHH!څH$hL$HD$H$L$HD$H$0HD$fDHt$H)HLHD$@ILH $LHH$LHH4$HL}HT$ILLLILLLLH9\$0LILLLHH$HDHD$@H9NIH $LHt$jfH9yUH9|UH9gUL=zUMDH9UvOH9UH9sUL=UfH9T{L=DUH9QUL=TL=TH9TL=TH9TIL=TA$u HD$0HD$8I)D$D$/ A$$uH$"$uH$"$uH$("$uH$v"Ht$ HLvH$xdH3%(HĈ[]A\A]A^A_DH;Ts_H;SH;S`1H;SH K1ɸ@HLoH;SsH;S1H;SHDH;)SryH;0S 1H;SHHLn'1H;RH1H;7SH1H;RH n1H;RHY1I9HHL=R|I9vTL=PRkL=\R_L=xRSL=TRGL=pR;L=lR/L=R#L=QtfAVAUATUHSHHH}dH%(H$x1H_HD$pD$@0HD$HHD$PHD$XHD$`@HD$hHH|}Lt$ILl$@LMLHH!LT$@XHl$PHl$HuH|$h "D$@u L "1HHDfDHH$xdH3 %(HĀ[]A\A]A^H;Ps/H;PH;P1H;PH;Ps7H;P:H;P r1H;PH ]H;PH;P1H;PH+H;9PH;1H;AH )fHL$H|$IHH蘢H|$HHH譞HL$HT$(IHHXHT$(HHHmHL$ILHHHLHH1@Lt$HT$LIHt$ L{HLL >ILl$@yHD$(IHD$@kfDH#H{(H: HLD$xHH9H gbIM$uH$8`!$HT$xL$8HH$0HFDH#HD$@It$(Hx(IHI9LD$xPaIM3@u H{(!3HT$xLs(HHS H6fDHKHD$@It$(Hx(IHHI9LD$xCaIM3@u H{(D!3HT$xLs(HHS HfDH;>3H;>H;>41H;>H H;>H;|>H;>l1H;c>H WH;Y>H;4>&H;7>1H;>H HH]ZLs(HC/H|$HCZL$8H$(fDHHZLs(HCH;y= H;|= 1H;`=H@H;=H;=^1H;m=HfH; =k H; = 1H;<H@H;<c H;< 1H;<H@H;<H;< 1H;<HH;<H;< 1H;<HHH4PHHHHHHH9u7IfDHHIHHHIHHHH9tHl$PHHHHH?HHH)Hl$HH9HOHHH"HkfHHVLs(HCHHVLs(HCH|$HcVL$8H$(!fDHTIH HKHs(H IHH迋f.LSTIHo HD$@IL$It$(L@H@(H& HLkfDLTIH HD$@IL$It$(L@H@(H HLfDHL%LL$xMHLLL$xMHC(L$8I#NJIv8uHHHHHHH?HHHL!HHH%a9HLHHHHHHLHHL!HH)ID$I$HT$x$H$0HHD$@IT$(I#NJLs(H@(HH"HHHH?IHIM!IHH%8ILIv8uHHHHHHLHHH)IFH#NJH!HIHT$x3H{ HfDHD$@IT$(I#NJIv8uLs(H@(HH"HHHH?IHIM!IHH%8ILHHHHHHLHHL!H)HIFIHT$x3H{ HHHTLL$xH|$HT2HL$xHHeTLL$xu1H;7H[1H;8HC1H;o7H1H;7H1H;?7H1H;7HpIpI#pILD$xHHlILD$xlIVfDLD$xlIfDIH&IH?HH#NJIII!HMHH%,6IH#NJHIIILIv8uHLHHL)H$IH#NJH!HH$IBH&LIHH#NJHHLH?III!HMHH%5IH#NJHIIILIv8uHLL4H#NJLL!L)L4H|$hH$L$HIHfIHLHH?HHIH#NJI!HMHH%4IIv8uH#NJHHHHLI#NJHLHHL!H)HH$HH$IBHfHD$hHHHHHH?IHIHM!IH%V4ILHHHHHHLHHL!H)HH$H$DIH&IH?HH#NJIII!HMHH%3IH#NJHIIILIv8uHLHHL)H$IH#NJH!HH$IBH&LIHH#NJHHLH?III!HMHH%A3IH#NJHIIILIv8uHLL4H#NJLL!L)L4H|$hH$L$HIHfIHLHH?HHIH#NJI!HMHH%2IIv8uH#NJHHHHLI#NJHLHHL!H)HH$HH$IBHfHD$hHHHHHH?IHIHM!IH%2ILHHHHHHLHHL!H)HH$H$DI#NJH>I#NJI#NJHHHHIH?IHIM!IHH%s1ILIv8uHHIHLHLHHL!HL)H$H$HFH&HHIHH?ILIHM!IH%0ILMLHIHHHMI<IL!M)HL$H$HHfHHIHH?ILIHM!IH%0ILLHIHHHMIHL!L)HH$IH$HFHIHHMLHH?IHIHM!MH%0ILHHHHIHLHHL!LH)H$H$'HH5KH|$H#K fDHH K1H;/H {1H;/Hc1H;/H K1H;/H31H;/H 1H;W/HLؘHD$ H/HpHxLH(L@H$HD$`HL$Ƅ$H$HHC(u HI!HC .D1H;/Hk1H;/H1H;.H;H|$H֊HHHH訊$pHt$@H{ 1 ID$HFHC1N@$@Ht$@H{ 1 ID$HFHC1@$H$0ȃ$HCHH$1`fDHLHLw}fHLHL_}f.HH@}@1H;-HHH1HHHHH91HT$XLYOff.@AWIAVIAUIATULSHHT$Ld$H\$@LdH%(H$x1HD$pD$@0HD$hHD$HHD$PHD$XHD$`@қHt$HLHϨILHLLD$@uH|$h!D$@u H!H$xdH3%(uHĈ[]A\A]A^A_Nff.AWIAVIAUIATULSHHT$Ld$H\$@LdH%(H$x1HD$pD$@0HD$hHD$HHD$PHD$XHD$`@ҚHT$H1hHLȥILHLLD$@uH|$h!D$@u H~!H$xdH3%(uHĈ[]A\A]A^A_M@AWIAVIAUIATULSHHT$Ld$H\$@LdH%(H$x1HD$pD$@0HD$hHD$HHD$PHD$XHD$`@ҙHt$HLHϦILHLLD$@uH|$h!D$@u H!H$xdH3%(uHĈ[]A\A]A^A_Lff.AWIAVIAUIATULSHHT$Ld$H\$@LdH%(H$x1HD$pD$@0HD$hHD$HHD$PHD$XHD$`@ҘHT$H1fHLȣILHLLD$@uH|$h!D$@u H~!H$xdH3%(uHĈ[]A\A]A^A_K@Hc@DHc@DAVAUMATULSHH dH%(HD$1D$H9tZLt$ILMD$uMLLHHJD$ EHD$dH3%(H []A\A]A^fHT$H4$RH4$HT$HItQLt$LHM~D$tQA$uI|$(!A$u L!D$pfDHH调XJMLLHHAVIAUMATIUHSHt t~t tKMLHHL)t []A\A]A^@HH[uE9tH)Ѕx*LHLĆ[L]LLA\A]A^fDLHL蚆HE1H9CҍL BAVIAUMATIUHSHt t~t tKMLHHLIt []A\A]A^@HH-ZuE9tH)Ѕx*LHL[L]LLA\A]A^.fDLHL躅HE1H9CҍL BAVIAUMATIUHSHt tTt t]MLHHLit []A\A]A^@HH ZuU9t@)ЅxLHLfLHL[L]LLA\A]A^<@HC1H9EҍL Bff.AVIAUMATIUHSHt tTt t]MLHHL艅t []A\A]A^@HHmXuU9t@)ЅxLHL$fLHL[L]LLA\A]A^\@HC1H9EҍL Bff.ATMUHSHzLHH[]A\AWIAVAUIATIUSLHHT$Lt$Hl$@LdH%(H$x1HD$pD$@0HD$hHD$HHD$PHD$XHD$`@rHt$HLHoILHLL軄HLLMD$@uH|$h)!D$@u H!H$xdH3%(uHĈ[]A\A]A^A_MEff.fAWIAVAUIATIULSHHT$Lt$H\$@LdH%(H$x1HD$pD$@0HD$hHD$HHD$PHD$XHD$`@bHT$H1S_HLXILHLL褃HLL6D$@uH|$h!D$@u H!H$xdH3%(uHĈ[]A\A]A^A_6DfDHc@DAUIATIUHSHHuaHSHC(H|t1LHHtuHLLH[]A\A]CA}$tLHHˀt̀eƐ{uuH[]A\A]DAUIATIUHSHHuaHSHC(H|t)LHHcHLLH[]A\A]髚A}$tLHH3t̀efۀuuH[]A\A]DAUIATIUHSHHu/LLHHtH[]A\A]H[]A\A]kufH[]A\A]DAVAUIATIUHSHHpdH%(HD$h1HBHD$0HD$`HD$@HHD$HH)HL$8HL$`HD$PHL$XtbLHu+E A$$LHLxA$ HD$hdH3%(Hp[]A\A]A^H$HSHD$HC(HT$LHD$(HHD$HD$ }~tHLLsHLĘD$t%A EkHT$0MHHLD$jD$%A E8HCHH+ID$LHL}@AVAUIATIUHSHHpdH%(HD$h1HBHD$0HD$`HD$@HHD$HH)HL$8HL$`HD$PHL$XtbLH~u+EA$$LHL^vA$ HD$hdH3%(Hp[]A\A]A^H$HSHD$HC(HT$LHD$(HHD$HD$ |tHLLsHLD$t%A EkHT$0MHHLD$調D$%A E8A$HCHH+ID$LHL2|>AVIAUIATIULSH }t []A\A]A^LLP}HLLHx_:uBHCHCHI9F~E@pMuHKHS(H|u ApE[M@]A\A]A^fHLHEmM{IAD 5AVMAUIATIUHSH6@u\uWHjH9i|pID$H HH)H9|\HSHC(H|H1Y[L]LLA\A]A^fMLHHL{u(tEu-[L]LA\A]A^vD[]A\A]A^LHL[]A\A]A^Jzf.HCHsHH)HH9HxMLH蚈tImIE1HTI9T$oID$HI+$H9YA fDHHLH)HHJA|$$Imw"AD$$H6"HcH>Hw+[IEHɃ@h1HtIuI}(jgHtDIEH!HpH9HLIU H9tAE H9IU(HIEL9iIEI;$nImj1HyHtwAEmIE@HtYAEOHtGHIE(HHHHHHHH)u1HIENLL4IELL33IE(Kff.@AVIAUATIUHSD.HAtx[]A\A]A^HwtLLHuHs(HSH|H~.HH1H HHH9u1AF(IntHI+.H+kHH9HOH蟌HkUfDLHH[]A\A]A^wf.DH1[]1A\A]A^&VfDHH4PH@HHHHHHHHHHH9tD1HNgmIHH+$)H9w L鵘DL¾rH+$)IHHڂ7H9w LuDL¾crIHHH1fIHHH֚fDuIHHH鱚HʾqAWMAVAUIATIUSHdH%(H$1HBHD$XHDŽ$HD$`HBHD$hHB HD$pHB(HD$xHAH$HAH$HA H$HA(H$@D$P@$H9HH9I9LI9Lt$ HL$LHT$ HT$HL$HrHc HH+AHHD$ H9 H9AL9AHA!Ht(L9t#EuH}(!Eu H!Et!u H{(!u Ho!1Lo1LoH$dH3%(4H[]A\A]A^A_IFH$LHHHD$Ht$ LL$PLHLD$LHLL$LuHL$LHHH|$`LHLD$Ht$HGHd H|$(HXLIH|$0HHD$ tLL$LHLD$HL ED$HH=ţ!G?Ht$HGyLD$HT$LHH詷LD$LHH!HoE%l$uL5!A1H oHI>8I>1H8I6 H5A@HL$HT$,HT$HL$HH0AHE1L9fHL$HT$q,HT$HL$HHALD$HT$LHH`LD$LHH!HFD$<%A L9t@LHLEqL9AƅEuH}(t!Eu Hc!L9t3LHLqt2u H{(;!u H+!D$<%A AL9Sva3AWMAVMAUIATIUHSHDD|$dH%(H$1H$D$ 0HD$HDHD$(D HD$0HD$8HD$@@tqMLHLL=qt)H$dH3%(HĘ[]A\A]A^A_A4$E@ LLlLIHI(HBHR(J|HTIL$H+MH $HaIHUI+T$HzH|$H[eI9HXL)L9H9!HIE HM5y!H9AE H9LLD\$DT$)DT$D\$uoLLkof.I_11LHKI+MADHLLjqf.LMD\$DT$IIHM(IT$(1I}(MD$2`KDT$D\$LcIE(HHHtH|tH9G!HIU HM58!AEH9t H9E1ڃI]LAH,$H+l$A EU]MHIu(HHHHHHHH)tHuHHImD$ uH|$H!D$ u H|$ !LLL蕇1ƺLhfH\$ HLLHD\$DT$p{DT$D\$HD$8LMIgfDL9;L92bfH\$PMHLH$HLD$P0HD$XHD$`HD$hHD$p@HD$xAED$PDT$D\$H|$xHT$hE1H|AĨu!D\$DT$R!D$PD\$DT$uD\$HDT$*!D\$DT$I]DE1ںLDփ:gAH|$%D$IUH~.Iu(HH1@H HHH9u1HD$LH9HHOHH蓀fDE1LDփGJLLLi@LLD\$DT$['D\$DT$f.LLD\$DT$%AEDT$D\$D1L!fD$PuH|$x!D$PH!fHE(IT$It$(I}(H[DT$D\$IfLLD\$DT$&AED\$DT$0DLD$ HLHLD\$DT$LD$[xLD$DT$D\$LL$8LL)I\$M9]#HH4PH@HHHHHHHHHHH9t1+ff.AVMAUIATIUHSHHdH%(H$1H$D$0HD$8H$HD$HD$ HD$(HD$0@D$@0HD$HHD$PHD$XHD$`@HD$hD$H9H9LL$MHLH޿D$uA D$uH|$8!D$u H|$!D$@uH|$hp!D$@u H|$@\!H$dH3%(Hİ[]A\A]A^DHMIT$D$ AoEAoMAoU H)D$p)$)$HT$pI;U|I%A 0@Hl$@LHHugLHcHLL$ LD$pHLt$  t$LH߁A 6t$ KcfDLd$HLLfWs)ff.AWIAVIAUIATULSHHT$Ld$H\$@LdH%(H$x1HD$pD$@0HD$hHD$HHD$PHD$XHD$`@uHt$HLH蟂ILHLLD$@uH|$hg!D$@u HU!H$xdH3%(uHĈ[]A\A]A^A_(ff.Hc@AWIAVIAUIATULSHHT$Ld$H\$@LdH%(H$x1HD$pD$@0HD$hHD$HHD$PHD$XHD$`@tHT$H1sBHLxILHLLD$@uH|$h@!D$@u H.!H$xdH3%(uHĈ[]A\A]A^A_d'@DAWAVIAUIATUHSHHHN(HVdH%(H$81H$0D$00HD$XH$0HD$8HD$@HD$HHD$P@D$`0HD$hHD$pHD$xHDŽ$@H$H$ HDŽ$ Ƅ$HDŽ$HDŽ$HDŽ$HDŽ$H|H$IHvI|$A$L<>I~NV1L^M@H$8dH3%(=HH[]A\A]A^A_MH$H$PIT$ H$HIЈ$H$L$L$(H$HHDŽ$( Ƅ$HDŽ$HDŽ$HDŽ$L$H$H$HD$P7MHIIIHD$qI LDŽ$LIDH HNHH$bH$IUHH+T$IUH9fH;)H;H;H; s1H;H IUffAH)H*H*Y\^(HH,HLMH9Ld$`1ɺ1LM~^@LsHl$ H$HD$HD$0HD$(HfDH;H;1H;HfDHMLHHHPHT$HHH$cMIHH !LLIH$L:H$HTH9WYH;rH;MH;P]1H;4H HIF11LHHI+)?MApD1ɺ1 ?D1ɺ1L>M@cH;yH;\.1H;EDHL[H;AH;D y1H;(Hd@H;is?H;P1H;9H5D1H;H1H;'HHt$Hl$ HoDŽ$LHucI~(tZIv@HtCIVH5/!HBH9HMIF H9tA H9IF(HIFLAM@HLMHtAuI~(gHtAu1Ht1HHtHI~(HHHHHHH)^1HHL[ LL$K<&H|$(IZHL)H|$(H$LLt$0L$]L]HD$D$THHD$HH|$(HD$ uLCL$IH|$ HD$ 1H$ HPHcٍyHHH?HHHHڅrH$EHL$H$HL$H4$H|$H)LHT$mHt$LLLD$L$ML,OLLLgMLLH~!L膑MLLHHbEHH9\$HLHELHTHT$0LcHD$0uH$H91MLLH4$SHHH5PHH)H$HID91H΀HH WHc]PH$Ht$ LHH8HT$(MLHLMLHLHN$AM@uH$L!$u H<$6!$uH$!$uH$!$uH$!$uH$Χ!H$( dH3%(WH8 []A\A]A^A_DLHGIހML$@H$H5e|!HMOMH޹HG|!LD$ZD$|uD$H$y HH$H$HL$HwH|$H LH+HyI9|uHL$ HBH$HHH)HHIHT$ TLHLL$D$`|$`LL$HE(u H!HU USfHHE) ff.AWIAVIAUATIUSHH8 dH%(H$( 1qHNHV(H|cH5z!Hv^HsHsHHHHIH 3HI;FIAoAoNAoV AF,)D$0)T$P)L$@D$TEH$ D$`0H$H$ H$H$ H$H$ HD$hHD$pHD$xHDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@H$L9 IHl$0H\$(D$XLhH$HD$HD$`HD$H$HD$HEHD$ LMI@H;sH;d1H;MHfDIH]H|$HH$HT$ILHD$0茊HT$IHH|$L脋AjIVIF(H|VHt$H|$LtQ<IHL$ Ht$(MHLLl$0+IFIFH+D$0$H$H$H@HHDŽ$HH;H;&H; H;1H;vH f. GutBLLrBH$( dH3%(bH8 []A\A]A^A_f1LAHl$0MHLHMHIOIGHT$@HHH9~5AuIwIG(H|tHH+T$0H9}A $@fLHL_;DH;swH; 1H;qHDH;H; 1H;H|@1H;Hc1H;'HKLMHT$@@(IOD$XIGHHH9~"AIwIG(H|@LHL^D$`uH$!D$`u H|$!$uH$!$u H|$n!$uH$T!$u H|$=!$uH$#!$H$!~HH+T$0H9A $@ ?J@1H;oH 1H;/H1H;wH111LR"DA $@H?L>f.H$LHHBtHLH>d@AWIAVIHLAUATMUSHHLD$Ll$@LdH%(H$x1HD$pD$@0HD$HHD$PHD$XHD$`@HD$h5BHl$HpQIFI9HIML}LHLD$4HHD$HD$D$UfH H9H H98H H9HB fH;iH;l A1H;PH,@H;s?H;x1H;aHD1H;H1H;OHLMIHT$0HAF(IOD$HIGHHH9~#AIwIG(H|DHLLSD$PuH|$x֕!D$Pu H|$•!$uH$!$u H|$!$uH$w!$u H<$a!$uH$G!$H$)!@HH+T$ H9M@ f14@1H;H S1H;OH;1H;H#HL$ HILIOIGHT$0HHH98AuIwIG(H|HH+T$ H9 M@H)fDM@H?L@3H=H9HC}DH=QH9HCeDH=H9HCMDH YH9HB F1fH=H9HCDL$HHL7tLHHH63ff.AWMAVIAUIATIUSHHxD1LD$HID1ރHdH%(H$h1HD$`@t$HrHD$XHBHR(D$00HD$8H9HD$@HNHD$HHD$P@H|H|$HSHH)I+T$cH|$H;eH94HD\$(H)HXL|$0LHLL$ L`DLT$ D\$(OHL$HID$LHiH)H9~M9t.H9-!HIF HM5!H9tA ZH9M|$I93L9=!LIE HM5!H9AE MH9eI I6IL$(HS(LT$ Iu(I~(D\$(LC<$ zI~(D\$(HfHHtH|tH9-!HIF HM5!H9tA H9InLLT$(D\$ $A6HD$IFD\$ LT$(@ t$A6HI9FIE(If.IItJ|tL9=o!LIE HM5`!H9tAE H9M}LD\$$D\$AEDڃ AEHD$IEifH9H)HLLH#Bt!HD$IELHL3uߺ1L.1L.D$0uH|$X!D$0u H|$0!H$hdH3%(Hx[]A\A]A^A_LHL2tt$11LID$HH)HL9H96fA )H)L|$0LLL$ HLLALT$ D\$(HCMHH+T$HHjL9H9DM;}MfDHSID$(Hs(I~(I](HHujH1HHH MLHLLD\$(LT$ "AJAE?InM}I~(D\$(LT$ LT$(D\$ 1#I~(D\$ HLT$(A fDLLD\$(LT$ D\$(LT$ ML$fDLLD\$(LT$ D\$(LT$ LLD\$(LT$ [D\$(LT$ ;LLD\$(LT$ LT$ D\$(kLLD\$(LT$ LT$ D\$({LLD\$(LT$ sLT$ D\$(LLD\$D\$FDLLD\$0D\$&AWIIAVMAUIATIULSH2 tsLMLLLT$0LT$@AA HLL/HHL[]A\A]A^A_+HQHA(H|IWIG(H|1*1L*M41L*1L*MH[]A\A]A^A_@LL=IHL[1]1A\A]A^A_ LHLL IHHL[L]A\A]A^A_HfDHHLL[]A\A]A^A_l.@L)B)1L)M-AWIAVAUMATIUHSHHH6@22dH%(H$81HD$0$0HD$(EAHD$ HD$HD$HD$ @tiH.u-E AL(@H$8dH3%(HH[]A\A]A^A_HRHC(H|uHHUHE(H|L¾G)DWA11L {IMHILH$uH|$(!$u L!LLLF*f@(AMLL(fDAWIAVMAUMATUSHHHL$HdH%(H$81H$0D$`0H$H$0H$I@HD$hHD$8I@HD$pHD$@A@,HD$xD$\HBHBIHDŽ$@HPƄ$0HDŽ$HDŽ$HDŽ$HDŽ$@HT$0HD$HHL$PD$XAHl$0Ld$`HHL$HLHD$0H5e\!DŽ$$A HUL12!H$D$MH$LLHH$*NH$(D$,L|$,H$H$HHD$HDŽ$(Ƅ$HDŽ$HDŽ$HDŽ$HDŽ$9LH5[!H)*H$$HL$ H$H$H| D$D$`uH$!D$`u L!$uH$!$uH$υ!LLHCH$8dH3%(vHH[]A\A]A^A_DŽ$H<$LLH)H$HYL$HHHHD$fHl$HMHHH*LHH#CHL$H $HKHS(H|u$tDA Ld$`LHl$0Lk(s1H#st$1ɺHdMt$HHNgm=,H<$"tMMHLHH)LHH1BT$,A HsHK(H|u MHLLLR)LHLAH<$HT$MHL$HK$T$` ƒ ?t$,LH߁~#RfDLHHMH(LHHnAUf$i$\ff.@AWAVIAUMATIUHSHhHL$dH%(HD$X1uD:EAHL$MLHL'AE>]E1AEAALEAAEAAD$ZEuINIF(H|VH5:W!HDD$D\$DL$D$ DD$HEH|$ LPDD$HD$(HE\$ I^HD$0HEI^HD$8HE HHD$@HE(HD$H9sDD$HH92HT$0AHDD$HT$(HD$HH?8HHH+HyDD$HH9MELD$L$LHLHD$XdH3%(HHh[]A\A]A^A_DHAAAtLAE1AEAHuHE(H|-EAA!L_AD$AH5oU!HDL$DL$Dڍ QЅt$LjDHMHE(H|tHE1E1zDEu[INIF(H|uKt$1ɺLEDINIF(H|uPLLsA[t$11LfQ11LT?EHx DD$HH9t$HNgmL Ht$LL,=LDL$DD$D\$AHUH\$ LLHL$IDL$HўD$ DL$%A EsHD$LLDL$H5S!HHS0A4$DL$H)؃ID$A E $AM@fDLAEх8DEHD$HAM@HLHH5R!LDL$!0A4$DL$HI\$A E $HD$LHLL@,HA$tBgHNgm1It$;LLO*H5SR!LuHD$LH58R!LHHSY/H)A$ID$vHLDL$DL$HHD$HHH9AMH/ff.@AWAVIAUMATIUHSHHHdH%(H$81HD$0$0HD$HD$HD$HD$ @HD$(utuMLHHL !u/E6LHLLLL:H$8dH3%(HH[]A\A]A^A_DHRHE(H|u(HVHF(H|upL¾fIMHIHHLV$uH|$(s{!$u Lb{!LLLd9ILL(-ff.AWIAVMAUATIUHSHH dH%(H$ 1H$D$p0H$H$H$H$H$H$HD$xHDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$ @H$(D*H$DH$XDHDŽ$ Ƅ$0HDŽ$8D HDŽ$@HDŽ$HHDŽ$P u:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}internal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)Cannot hash a signaling NaN valuedec_hash: internal error: please reportargument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strinternal error in flags_as_exceptioncannot convert Infinity to integeroptional argument must be a contextargument must be a signal dictvalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]valid values for capitals are 0 or 1valid range for prec is [1, MAX_PREC]valid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]internal error in PyDec_ToIntegralExactinternal error in PyDec_ToIntegralValueinternal error in context_setroundvalid range for Emin is [MIN_EMIN, 0]valid range for Emax is [0, MAX_EMAX]valid values for clamp are 0 or 1internal error in context_settraps_dictinternal error in context_setstatus_dictcontext attributes cannot be deletedinternal error: could not find method %sconversion from %s to Decimal is not supportedinternal error in dec_mpd_qquantizeinvalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICinternal error in context_settraps_listinternal error in context_setstatus_listargument must be a tuple or listcannot convert signaling NaN to floatoptional arg must be an integerexact conversion for comparison failedoptional argument must be a dictformat specification exceeds internal limits of _decimalcannot convert NaN to integer ratiocannot convert Infinity to integer ratioP@0p`?B to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. subtract($self, x, y, /) -- Return the difference between x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. radix($self, /) -- Return 10. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. number_class($self, x, /) -- Return an indication of the class of x. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. multiply($self, x, y, /) -- Return the product of x and y. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_invert($self, x, /) -- Invert all digits of x. logical_and($self, x, y, /) -- Digit-wise and of x and y. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. exp($self, x, /) -- Return e ** x. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. copy_sign($self, x, y, /) -- Copy the sign from y to x. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. canonical($self, x, /) -- Return a new instance of x. add($self, x, y, /) -- Return the sum of x and y. abs($self, x, /) -- Return the absolute value of x. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. conjugate($self, /) -- Return self. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. localcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module??/root/rpmbuild/BUILD/imh-python39-3.9.7/Python-3.9.7/Modules/_decimal/libmpdec/typearith.hsub_size_t(): overflow: check the context%s:%d: error: CLAMP_DEFAULTCLAMP_IEEE_754ROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCJ*m< d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJ @ @ @ @ @ @ @ @@PT /root/rpmbuild/BUILD/imh-python39-3.9.7/Python-3.9.7/Modules/_decimal/libmpdec/context.cmpd_setminalloc: ignoring request to set MPD_MINALLOC a second time illegal value for MPD_MINALLOC%s:%d: warning: n=_s3iaYMqyx IQ FFq 9[h7I=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"! $`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z<h?`<?t<D<HM =Yh=Y|=Z=8[=x[=[=X\ >]4>h]H>]\>^p>^>^>^>^>^>^>^>^?_$?8_8?X_L?_`?_t?_?_?`?(`?H`?l@@y@~@88AdA؇AA0Bh\BXB4CCCCXCxDD@DD(D0EhEXEhPF|FFF(FHFG,Gh`GxtGG G8 4H Hh H Hh HpIII$J(ENNoRAZ AAA t@AL0Z AH (AAJK0^ AAJ A0,ABKD D0a  AABF `A tA A LABBB A(D0z (D BBBA W (D BBBA D`B<ENNpExFFFFFUp4 AAA 4XDt\LDJEd G YHlDBEB B(A0D8FP 8A0A(B BBBA DDGrFIK H(A0Dk 0A(A BBBA 0|JFAN D@  AABA 4MiH B F P\MEI0Y AH tMEI0Y AH tNEI0Y AH OEI0Y AH (OEFD0~ AAA 0  PFCD D0y  AABB @@PEDK0K AAG T CAH V AAH (HQvED A EI D CA <QiEDD0l AAE V AAH DCA0QFFD D@  AABD 0$RFFA D@  AABD 0XTSFFA D@  AABD 0 TFFA D@  AABD @TFDH B CBG H ABE JAB@8UFDH G0D  AABG k  AABI DHUFHD B CBG [ DBO I DBI 8,VFEF A(DP (A ABBH @WFDH G0D  AABG x  AABD @,XFDH G0D  AABG x  AABD @TXFDH G0D  AABG x  AABD @dYFDH G0D  AABG x  AABD @ZFDH G0D  AABG x  AABD @ ZFDH G0D  AABG x  AABD @d8[FDH G0D  AABG x  AABD @[FHD G0H  AABK |  AABH @\FHD G0H  AABK |  AABH 00,]FDH G0  AABI 0d^FDH G0  AABI D^2FBE A(F0Dm 0A(A BBBC 0`\FDH G0w  AABD 0b\FDH G0w  AABD 0H4c\FDH G0w  AABD 0|`d\FDH G0w  AABD 0e\FDH G0w  AABD 0f\FDH G0w  AABD 0g\FDH G0w  AABD 0Li\FDH G0w  AABD 0BUAmKQA804,FJD D(DpD (A ABBJ \l4pFEE E(H0C8F@o 8A0A(B BBBA D8F0A(B BBB\4нFOE E(E0D8DP 8A0A(B BBBF D8F0A(B BBB\,5` FOE B(E0C8D` 8A0A(B BBBG D8F0A(B BBB(5END0W AAH 5EQ T AE 5FPhH54# 6P0 6\>EGJ W AAA HDAT6h#0h6EKD s AAG WDA6$6EEG U AF [AH6$FEI A(J0E (F ABBA z(A ABBH$7FEI A(J0s (F ABBC z(A ABBHp7FEI D(J0k (A ABBE E(A ABB(7`sUDJ AAAJ07`ELJ h AAK MAA8x08l)BBB B(A0D8D 8H0A(B BBBI  8A0A(B BBBI T8G0A(B BBB8 SAH8hBEE B(A0A8D`X 8D0A(B BBBG L97BHB E(A0D8Dx 8A0A(B BBBD `9SA x9]E] F j A p9 BEB B(A0A8i 0C(B BBBA S 0A(E BBBG  0F(B BBBI :\$: 8:bO[IH\:BEE B(A0A8Dp 8D0A(B BBBK H:BEE B(A0A8Dp 8D0A(B BBBC :X8;$bBED D(G@) (A ABBK D;XX; l; ;;;;; [;X);t5 <  < 4< H<\< p< < << << < <=2$=28= L=`= t== === ==>>!(>2E_ L AH>$=0\>P{EDD L AAE TAA >}ED y AE >ED0V AH 0>FAD G0w  AABC  ? ]( ?lAAD0~ AAJ (L?\ADD0V AAG x??????? @@,@@@T@h@|@@@ @EG Q AB H@pBBB E(A0A8D_ 8A0A(B BBBF 8(A-FOD A(G0 (A ABBH dAxAdApjA0AFDC G0Z  AABF 0ATFDD G0\  AABK BE0BpDBxXB(lBEGI0l AAE B$ B BEO N AE BEG Q AB ,CNDG p AAE h$8C`YIG oFA4`CEAG W CAH B FAG HC$BBB E(D0D8JT 8A0A(B BBBE ,CNDG p AAE `$DXjEDD WDA@F $F|E%`DP20`5 @;0 FPK ZPfp xPP{`p@r0na`O`\ZS@g^`PX@l`t pe`pKv#v@(`u. ;PE`Q0Xbp@jt| 1`@p@@PDF`M! V-i8vD y@KpX@c_Q eq qp}0q0q`42@*5);@#FP`"PZ0 f` x0 /`?)>p4&`,`%!$P$ $' !9@`1.`0;0 0E/Q /bЯ-tp,j -@`+X .|p+xB1 q`@8(u7P 7('@p  :8P@5KpH@!< (-A '8&D 7X0?`_1@@2@BX@ A}оо` &w p @0pv`@@}16pu;~Ep~s`spsP@s0ss0}p onnnnOnnn_2P+nfnf+#@2P5 OG@_WogNq$@p$pw ~@$`Pv`$$hs$@x C$$PIGWGfGoGzGGGGGGGoUNlNUNUNUNOUNUNUN}N_2P+oNlNNNNONZNN}N_2P+GCC: (GNU) 8.5.0 20210514 (Red Hat 8.5.0-26)GA$3a1c GA$3p1113oGA*GA$annobin gcc 8.5.0 20210514GA$plugin name: gcc-annobinGA$running gcc 8.5.0 20210514GA*GA*GA! GA*FORTIFYGA+GLIBCXX_ASSERTIONS GA*GOW*GA*cf_protectionGA+omit_frame_pointerGA+stack_clashGA!stack_realign GA$3p1113@GA*GA$annobin gcc 8.5.0 20210514GA$plugin name: gcc-annobinGA$running gcc 8.5.0 20210514GA*GA*GA! GA*FORTIFYGA+GLIBCXX_ASSERTIONS GA*GOW*GA*cf_protectionGA+omit_frame_pointerGA+stack_clashGA!stack_realign GA*FORTIFYpvaGA+GLIBCXX_ASSERTIONS GA*FORTIFY@GA+GLIBCXX_ASSERTIONS p :- oE oa o~ o o o o o p0 pM p] p| p p p p p  p p. p>P%J pm p p p q q q ,q2 q @ ,q\ uqv 0qE$ uq q qg% q s" q2`$@= s] -s{ s -s =s 0s  =s gs" @s'3`%@= gs\ sy ps s s s s s s! s< sU s"a s~ t t t Yu uY Yu  fu% `u3 fuK ua puYj u v uH v pv vP pv( v@ pvK vj v v v v v v  w  v)  $x;  wU  wm  w9x  w  1x  x1  1x  {  @x  {  e|>  |eS %l %  e|  |C  p|i  |  }  | %7 %Q  }p  b~  }  b~  ~  p~:  ~+  ~M  ~:b  ~  7  ~G  7  C  @  C"  ?  PWO  l     %      % @0  8 ZF$O j =% = = G @ G O5 PN0%\ %w(% O  P   n / qK Z q c  c  p9P$ < Y Bi0$v  B B $ B ߗ P$ ߗE od v o  p$   *$7 T o B}$  B BP$ B % PB8@$E h  B0$  2 B $ 2 4 @B@$M i ң B$ ң   # < W n      Z j Z4 <O `] <  @    6 `W `k ` ˧ `k ˧ X© Ч X  *- `C$P *u  0`$  E E  E) F PkV u + k +  0{  9 dO u  d   0  22 rB 2` p| @0 p  p0  Я 0# ЯA ] Я0l  0 0 0 ` 00 `3 T `0h  /  /  0t ) nA L nh ۴ pk$  ۴ < \ <    @+ $ 8  Y  x   $   A   A! >! P_! }! ! ! ! " -" E" [" d" " ̾" " ̾" ܾ" о " ܾ" # '# C# ]# <j#$Hw# # _# # _# G `J$ $$ EB$ S$ Ej$ $ Pr$$$ $ {I $ $ "% i:% S% j% t% % Q% % Q% % `% & %& .& F& ~\& e& ~|& >& & >& & @& & ' v' 9' Q' i\' z' ' ' ' ' ' ( !( .( I( b( n( ( G ( ( J( ) J) 9) PG) e) ) )0$)@$) ) ) ) * b9* H* bf* B* p* B* "* P* "* + 0&+ F+ d+ u+ + + + + , , <, ], q, , , , , , - - 7- 2C- d- l- \- l- - p\- . ,(. \6. ,Q. j. 0\v. . . \. . L. \/ L*/ D/ P\Q/ o/ / \/ / l/ \/ l 0 -0 p\D0 c0 ,0 \0 ,0 0 0\0 1 $1 \41 Q1 Ll1 \z1 L1 1 P\1 1 2 \2 =2 Z2  j2%s2 2 ?2 2 ?2 _2 @2 _3 .3 `]93 ^3 3 ?3`$3 3 ?3 ?4$4 ?94 $U4 @d4 $4 :4 0 4 :4 b4 @"48%5H% 5@%65 bZ5 L|5 p5 L5 5 P5$5 6 !)6 66 $C6 !_6 B$y6 !60$6 B$6 &6 P$6P$6 &7 )57 'J7p$W7 )~7 R,7 )7$7 R,7 /8 `,8$$8 /D8 1b8 /s8$8 18 b48 18$8 b48 7 9 p49$&9 7E9 9b9 7r9@$9 99 r<9 99$9 r<9 "?: <!:$.: "?M: Aj: 0?z:`$: A: D: A:$: D: wF; D2; wF[; gH; F; gH; K; pH;$< K < _M:< KOG< _Mi< O< `M/< O< Q< O/< Q< S= Q/(= SH= Vf= S/w= V= OX= V/= OX= Z= PX/ > Z(> \B> Z/O> \o> ^> \/> ^> a> ^/> a? ?c5? a/E? ?cd? oe? @c/? oe? g? pe/? g? i @ g/@ i2@ kK@ i/W@ ks@ /n@ l/@ /n@ _p@ 0n/@ _p@ rA `p/,A rSA txA r/A tA vA t/A vA yB v/%B yDB O{aB y/qB O{B }B P{/B }B B }OB C (C O4C OC ohC OtC oC C pOC C C .C@$D &D :CD$]D$hmD%~D@$PD%D@FD $DF>DEAD`D)D$ D7E&E`BE <*E8E VKEU]EQoE }|EBE fE:ESE5E@;ETF4F`Q&FR5F`QAFVQFQ]F@VmF>~F`^F@^F`FF`FFuF?FG@G! G P5GJGG`N[GOjGS|G@MGLGQG PGHG9GGG@< H@JHS,H@:CHHXHYnH[HYHlH;H=H;H=I@FI[%I`4I EBI 6VI4jIOwIII$I`4I*I)I@#I`"IfJ J [&J @gdJ&lJ`%xJ$J $J !9JJJ`1J0J 0zJ/uJ /fJ-Y K,\K -$K`+j0K .>K+OKBc\K`@jK8'xKK7K 7K(.K'gK@SK K:K8L@5L@U%L (l5L 'jDL&uTL?_L`jL@tL@2L@BFL AL$ L$xL@$`L$L$L$@M`M C*(M @=M VM ooM oM oM oM oM o N o$N oBN @^N )xN )N ٕN ٕN ]N ]O "O >O XO xO O O O O P !P 3j oXj ovj Pfj fj Pfj fj jj f)j jk sjTv >tv Nv Nv qv qv v w *w Jw {hw {w w w w w ~ x ~)x ݙDx ݙhx x x x ܜx \x ܜ y $y ?y Xy xy y y 0y 0y @z @"z H@z H`z X~z Xz hz hz xz x{ :{ ]{ ~{ { { { | #| ȝ@| ȝ]| ߝx| ߝ| | | | } o$} 3} oP} k} } '} '} E} E} ~ )~ ңA~ ң_~ {~ ~ H~ H~ ~ PE  8 pF c $~ $ A A    & B )\ )x   BȀ B   p2 pQ n  C   ց  * *% K@ K` k~ k  Ђ ܲ ܲ F F? ׳` ׳}   ɵ؃ ɵ  = ɶ` ɶ{   Nʄ Nׄ N  PU2 U Ծv Ծ   oօ   - J g   & &؆   * F `    ܇   1 L i / / 6 6ֈ n n 2 Q n ~   ω 6  6 D @I\ t L L 3 3Պ r r  5 J e ~  X X͋ P P  0 |F |^ t   o ، 2 2  * @o: Z x n  ɍ $0ۍ   A= Q"` A~ E E LҎ L E  E) LD L` \z \ k k̏ y y  8 R n    ڐ    !" !: !P !l " " # #Б u$ u$ $ $6 %R %o & & & &ܒ & & &, &H 'b '| ' ' K(ē K(ܓ ( ( p*. p*L (,h (, - -Ô 10ޔ 10 1 1. 1H 1h -2 -2 G2ȕ G2 j2 j2" 2: 2[ 7z 2 $0`$0 7 ?B 7eƖ ?ޖ uA uA uB. uBJ Bd B B B Cҗ C C C$ C> CW YL Cn YL 9S 9S W̘$0֘ W E^ W%@Q. E^E eZ e 'g e 'g֙ hh 0g8 hh  dq! dqE 0xg pq| 0x (z oĚ (zߚ { o  {) qD |qR qj ч ч r o rڛ   7+ oA 7[ r @s    $՜ $ s s/ I b Hy H  ҝ   }+ }J ?g ? ͮ`X%%Ğ Юܞ  o o4 oU oz o o o۟ o Ю *6 *Z O| O  Ϡ  o o o4 oT oo o o o¡ ޡ   6 K d o} o o oڢ o o o2 oP r   ƣ 3 S 3 .5 @F ._ v   oƤ oȤ pۤ @p%$' p3$R` Pj ^  s  p   m Nͥ ݥ { P X4 0x L(  5 B B R  `  l p {  a  ` ] pesզ @  d1 P2' ' e` a# 6 к D @KVJ^ /l , MS| Ч:  @L 8 !97 0, 9 7  0ɧ ֧ P @ cE   ~ 0) 9 P3 9H  U  2  @2b `Vp } P0  :  е C è ب   Pc &   Д # P2  B ?e; @SH-6  0 E 10 02R 0]:   d PC Pq a>e( P(k  Џ}  A 0 CH+C  @˩ @FF۩ F8 P^L 9 !% P % & f8 f# & 0  = `G ,P Z  3 9g N]z Н}6 "6 # `    X   1= pɪ ת %    M %) 6 0K n: HX  `Lb @b P p p-~ PS\   $ p2-G ( Q« @ӫ p 2   P @0h  `S x)%6 PD   1=R ЮZa  %} |  -5 p5) p*n C { `% N 0 @ì pҬ &  @ Pj 0  } '  ph4 Q' 4 H P!V a )i $x a#J Pf9    "  0 " 5ȭ%׭ H  0H    B& 0 dH `G @.T 08 PHf Pu kC  ж-$ 7 P `  b#ʮ pخ   ` @%H 0aF " 6 'E } S 0`Jk jv  MS _  J \   @ȯ 0[Я  ߯ 0f L; 0CZ%$1 P > C $(K #X `g u p     bʰ ]ذ sݰ B   ` J$( ' $$ /  ;%D  2 0zT ۨ c_ 0n  ] @2 = F 3 @h 0 0 Jϱ ݱ 28`(Y c 0c pi o ZPk$$$$$$%e0LatƲٲ  -<Qep³س%!:Nj}ȴش(7H[i|ɵܵ 3DRfuǶ ֶ$7CQ`q޷(=Ld~\%¸θ%#5Jbn|ǹڹ'?Law ͺ J ݺ "'5Baz.annobin__decimal.c.annobin__decimal.c_end.annobin__decimal.c.hot.annobin__decimal.c_end.hot.annobin__decimal.c.unlikely.annobin__decimal.c_end.unlikely.annobin__decimal.c.startup.annobin__decimal.c_end.startup.annobin__decimal.c.exit.annobin__decimal.c_end.exit.annobin_dec_traphandler.start.annobin_dec_traphandler.enddec_traphandler.annobin_signaldict_init.start.annobin_signaldict_init.endsignaldict_init.annobin_signaldict_len.start.annobin_signaldict_len.endsignaldict_len.annobin_signaldict_iter.start.annobin_signaldict_iter.endsignaldict_iterSignalTuple.annobin_context_clear_traps.start.annobin_context_clear_traps.endcontext_clear_traps.annobin_context_clear_flags.start.annobin_context_clear_flags.endcontext_clear_flags.annobin_dec_canonical.start.annobin_dec_canonical.enddec_canonical.annobin_context_copy.start.annobin_context_copy.endcontext_copyPyDecContext_Type.annobin_PyDecType_New.start.annobin_PyDecType_New.endPyDecType_NewPyDec_Type.annobin_signaldict_repr.start.annobin_signaldict_repr.endsignaldict_reprsignal_map.annobin_context_getclamp.start.annobin_context_getclamp.endcontext_getclamp.annobin_context_getcapitals.start.annobin_context_getcapitals.endcontext_getcapitals.annobin_context_getround.start.annobin_context_getround.endcontext_getroundround_map.annobin_context_getemin.start.annobin_context_getemin.endcontext_getemin.annobin_context_getemax.start.annobin_context_getemax.endcontext_getemax.annobin_context_getprec.start.annobin_context_getprec.endcontext_getprec.annobin_dec_dealloc.start.annobin_dec_dealloc.enddec_dealloc.annobin_dec_from_long.start.annobin_dec_from_long.enddec_from_long.annobin_dec_mpd_radix.start.annobin_dec_mpd_radix.enddec_mpd_radix.annobin_ctx_mpd_radix.start.annobin_ctx_mpd_radix.endctx_mpd_radix.annobin_dec_imag.start.annobin_dec_imag.enddec_imag.annobin_sequence_as_tuple.start.annobin_sequence_as_tuple.endsequence_as_tuple.annobin_unicode_fromascii.start.annobin_unicode_fromascii.endunicode_fromascii.annobin_nm_nonzero.start.annobin_nm_nonzero.endnm_nonzero.annobin_context_getetop.start.annobin_context_getetop.endcontext_getetop.annobin_context_getetiny.start.annobin_context_getetiny.endcontext_getetiny.annobin_context_repr.start.annobin_context_repr.endcontext_reprdec_signal_string.annobin_dec_sizeof.start.annobin_dec_sizeof.enddec_sizeof.annobin_dec_mpd_adjexp.start.annobin_dec_mpd_adjexp.enddec_mpd_adjexp.annobin_dec_hash.start.annobin_dec_hash.enddec_hash.annobin_init_current_context.start.annobin_init_current_context.endinit_current_contextdefault_context_templatecurrent_context_var.annobin_current_context.start.annobin_current_context.end.annobin_PyDec_SetCurrentContext.start.annobin_PyDec_SetCurrentContext.endPyDec_SetCurrentContextbasic_context_templateextended_context_template.annobin_signaldict_copy.start.annobin_signaldict_copy.endsignaldict_copy.annobin_ctxmanager_restore_global.start.annobin_ctxmanager_restore_global.endctxmanager_restore_global.annobin_ctxmanager_set_local.start.annobin_ctxmanager_set_local.endctxmanager_set_local.annobin_ctxmanager_dealloc.start.annobin_ctxmanager_dealloc.endctxmanager_dealloc.annobin_dectuple_as_str.start.annobin_dectuple_as_str.enddectuple_as_str.annobin_context_dealloc.start.annobin_context_dealloc.endcontext_dealloc.annobin_PyDec_AsTuple.start.annobin_PyDec_AsTuple.endPyDec_AsTupleDecimalTuple.annobin_context_new.start.annobin_context_new.endcontext_newPyDecSignalDict_Typedflt_ctx.annobin_dec_addstatus.start.annobin_dec_addstatus.enddec_addstatuscond_map.annobin_dec_as_long.start.annobin_dec_as_long.end.annobin_PyDecType_FromLongExact.start.annobin_PyDecType_FromLongExact.endPyDecType_FromLongExact.annobin_PyDecType_FromFloatExact.start.annobin_PyDecType_FromFloatExact.endPyDecType_FromFloatExact_py_float_abs_py_float_as_integer_ratio_py_long_bit_length.annobin_dec_apply.start.annobin_dec_apply.enddec_apply.annobin_signals_as_list.start.annobin_signals_as_list.endsignals_as_list.annobin_context_reduce.start.annobin_context_reduce.endcontext_reduce.annobin_PyDecType_FromCStringExact.start.annobin_PyDecType_FromCStringExact.endPyDecType_FromCStringExact.annobin_dec_mpd_to_eng.start.annobin_dec_mpd_to_eng.enddec_mpd_to_engkwlist.17873.annobin_dec_mpd_qinvert.start.annobin_dec_mpd_qinvert.enddec_mpd_qinvertkwlist.17847.annobin_dec_mpd_qlogb.start.annobin_dec_mpd_qlogb.enddec_mpd_qlogbkwlist.17856.annobin_dec_mpd_qcopy_negate.start.annobin_dec_mpd_qcopy_negate.enddec_mpd_qcopy_negate.annobin_dec_mpd_qcopy_abs.start.annobin_dec_mpd_qcopy_abs.enddec_mpd_qcopy_abs.annobin_dec_mpd_issubnormal.start.annobin_dec_mpd_issubnormal.enddec_mpd_issubnormalkwlist.17810.annobin_dec_mpd_isnormal.start.annobin_dec_mpd_isnormal.enddec_mpd_isnormalkwlist.17803.annobin_dec_mpd_qsqrt.start.annobin_dec_mpd_qsqrt.enddec_mpd_qsqrtkwlist.17652.annobin_dec_mpd_qreduce.start.annobin_dec_mpd_qreduce.enddec_mpd_qreducekwlist.17643.annobin_dec_mpd_qnext_plus.start.annobin_dec_mpd_qnext_plus.enddec_mpd_qnext_pluskwlist.17634.annobin_dec_mpd_qnext_minus.start.annobin_dec_mpd_qnext_minus.enddec_mpd_qnext_minuskwlist.17625.annobin_dec_mpd_qlog10.start.annobin_dec_mpd_qlog10.enddec_mpd_qlog10kwlist.17616.annobin_dec_mpd_qln.start.annobin_dec_mpd_qln.enddec_mpd_qlnkwlist.17607.annobin_dec_mpd_qexp.start.annobin_dec_mpd_qexp.enddec_mpd_qexpkwlist.17598.annobin_signaldict_getitem.part.5.start.annobin_signaldict_getitem.part.5.endsignaldict_getitem.part.5dec_mpd_iscanonical.part.27dec_mpd_isfinite.part.25dec_mpd_isinfinite.part.24dec_mpd_isqnan.part.23dec_mpd_issigned.part.22dec_mpd_issnan.part.21dec_mpd_iszero.part.20dec_mpd_isnan.part.18.annobin_ctx_iscanonical.start.annobin_ctx_iscanonical.endctx_iscanonical.annobin_dict_as_flags.start.annobin_dict_as_flags.enddict_as_flags.annobin_signaldict_richcompare.start.annobin_signaldict_richcompare.endsignaldict_richcompare.annobin_signaldict_setitem.start.annobin_signaldict_setitem.endsignaldict_setitem.annobin_context_setcapitals.start.annobin_context_setcapitals.endcontext_setcapitals.annobin_context_setprec.start.annobin_context_setprec.endcontext_setprec.annobin_getround.start.annobin_getround.end.annobin_PyDec_ToIntegralExact.start.annobin_PyDec_ToIntegralExact.endPyDec_ToIntegralExactkwlist.17451.annobin_PyDec_ToIntegralValue.start.annobin_PyDec_ToIntegralValue.endPyDec_ToIntegralValuekwlist.17439.annobin_context_setround.start.annobin_context_setround.endcontext_setround.annobin_context_setemin.start.annobin_context_setemin.endcontext_setemin.annobin_context_setemax.start.annobin_context_setemax.endcontext_setemax.annobin_context_setclamp.start.annobin_context_setclamp.endcontext_setclamp.annobin_context_settraps_dict.start.annobin_context_settraps_dict.endcontext_settraps_dict.annobin_context_setstatus_dict.start.annobin_context_setstatus_dict.endcontext_setstatus_dict.annobin_dec_mpd_isnan.start.annobin_dec_mpd_isnan.enddec_mpd_isnan.annobin_context_getattr.start.annobin_context_getattr.endcontext_getattr.annobin_dec_mpd_iszero.start.annobin_dec_mpd_iszero.enddec_mpd_iszero.annobin_dec_mpd_issnan.start.annobin_dec_mpd_issnan.enddec_mpd_issnan.annobin_dec_mpd_issigned.start.annobin_dec_mpd_issigned.enddec_mpd_issigned.annobin_dec_mpd_isqnan.start.annobin_dec_mpd_isqnan.enddec_mpd_isqnan.annobin_dec_mpd_isinfinite.start.annobin_dec_mpd_isinfinite.enddec_mpd_isinfinite.annobin_dec_mpd_isfinite.start.annobin_dec_mpd_isfinite.enddec_mpd_isfinite.annobin_dec_mpd_iscanonical.start.annobin_dec_mpd_iscanonical.enddec_mpd_iscanonical.annobin_context_setattr.start.annobin_context_setattr.endcontext_setattr.annobin_cfunc_noargs.isra.29.start.annobin_cfunc_noargs.isra.29.endcfunc_noargs.isra.29.annobin_convert_op.start.annobin_convert_op.endconvert_op.annobin_ctx_mpd_qpow.start.annobin_ctx_mpd_qpow.endctx_mpd_qpowkwlist.18387.annobin_ctx_mpd_qdivmod.start.annobin_ctx_mpd_qdivmod.endctx_mpd_qdivmod.annobin_dec_mpd_qfma.start.annobin_dec_mpd_qfma.enddec_mpd_qfmakwlist.17757.annobin_dec_mpd_qquantize.start.annobin_dec_mpd_qquantize.enddec_mpd_qquantizekwlist.18000.annobin_dotsep_as_utf8.start.annobin_dotsep_as_utf8.enddotsep_as_utf8.annobin_PyDecType_FromFloat.constprop.35.start.annobin_PyDecType_FromFloat.constprop.35.endPyDecType_FromFloat.constprop.35.annobin_ctx_from_float.start.annobin_ctx_from_float.endctx_from_float.annobin_PyDecType_FromCString.constprop.40.start.annobin_PyDecType_FromCString.constprop.40.endPyDecType_FromCString.constprop.40.annobin_dec_real.start.annobin_dec_real.enddec_real.annobin_dec_conjugate.start.annobin_dec_conjugate.enddec_conjugate.annobin_dec_copy.start.annobin_dec_copy.enddec_copy.annobin_list_as_flags.start.annobin_list_as_flags.endlist_as_flags.annobin_context_init.start.annobin_context_init.endcontext_initkwlist.16995.annobin_signaldict_getitem.start.annobin_signaldict_getitem.endsignaldict_getitem.annobin_ctx_canonical.start.annobin_ctx_canonical.end.annobin_numeric_as_ascii.start.annobin_numeric_as_ascii.endnumeric_as_ascii.annobin_dec_new.start.annobin_dec_new.enddec_newkwlist.17301.annobin_ctx_create_decimal.start.annobin_ctx_create_decimal.end.annobin_PyDec_GetCurrentContext.start.annobin_PyDec_GetCurrentContext.endPyDec_GetCurrentContext.annobin_dec_floor.start.annobin_dec_floor.enddec_floor.annobin_dec_trunc.start.annobin_dec_trunc.enddec_trunc.annobin_nm_dec_as_long.start.annobin_nm_dec_as_long.endnm_dec_as_long.annobin_dec_ceil.start.annobin_dec_ceil.enddec_ceil.annobin_dec_repr.start.annobin_dec_repr.enddec_repr.annobin_dec_str.start.annobin_dec_str.enddec_str.annobin_PyDec_AsFloat.start.annobin_PyDec_AsFloat.endPyDec_AsFloat.annobin_dec_complex.start.annobin_dec_complex.enddec_complex.annobin_dec_reduce.start.annobin_dec_reduce.enddec_reduce.annobin_dec_from_float.start.annobin_dec_from_float.enddec_from_float.annobin_nm_mpd_qminus.start.annobin_nm_mpd_qminus.endnm_mpd_qminus.annobin_nm_mpd_qplus.start.annobin_nm_mpd_qplus.endnm_mpd_qplus.annobin_nm_mpd_qabs.start.annobin_nm_mpd_qabs.endnm_mpd_qabs.annobin_ctx_copy_decimal.start.annobin_ctx_copy_decimal.end.annobin_PyDecContext_Apply.start.annobin_PyDecContext_Apply.endPyDecContext_Apply.annobin_ctx_mpd_class.start.annobin_ctx_mpd_class.endctx_mpd_class.annobin_ctxmanager_new.start.annobin_ctxmanager_new.endctxmanager_newkwlist.17058PyDecContextManager_Type.annobin_ctx_mpd_issnan.start.annobin_ctx_mpd_issnan.endctx_mpd_issnan.annobin_ctx_mpd_iszero.start.annobin_ctx_mpd_iszero.endctx_mpd_iszero.annobin_ctx_mpd_isqnan.start.annobin_ctx_mpd_isqnan.endctx_mpd_isqnan.annobin_ctx_mpd_isfinite.start.annobin_ctx_mpd_isfinite.endctx_mpd_isfinite.annobin_ctx_mpd_isnan.start.annobin_ctx_mpd_isnan.endctx_mpd_isnan.annobin_ctx_mpd_issigned.start.annobin_ctx_mpd_issigned.endctx_mpd_issigned.annobin_ctx_mpd_isinfinite.start.annobin_ctx_mpd_isinfinite.endctx_mpd_isinfinite.annobin_ctx_mpd_isnormal.start.annobin_ctx_mpd_isnormal.endctx_mpd_isnormal.annobin_ctx_mpd_issubnormal.start.annobin_ctx_mpd_issubnormal.endctx_mpd_issubnormal.annobin_ctx_mpd_to_eng.start.annobin_ctx_mpd_to_eng.endctx_mpd_to_eng.annobin_ctx_mpd_to_sci.start.annobin_ctx_mpd_to_sci.endctx_mpd_to_sci.annobin_PyDec_Round.start.annobin_PyDec_Round.endPyDec_Round.annobin_ctx_mpd_qcopy_abs.start.annobin_ctx_mpd_qcopy_abs.endctx_mpd_qcopy_abs.annobin_ctx_mpd_qcopy_negate.start.annobin_ctx_mpd_qcopy_negate.endctx_mpd_qcopy_negate.annobin_ctx_mpd_qlogb.start.annobin_ctx_mpd_qlogb.endctx_mpd_qlogb.annobin_ctx_mpd_qln.start.annobin_ctx_mpd_qln.endctx_mpd_qln.annobin_ctx_mpd_qabs.start.annobin_ctx_mpd_qabs.endctx_mpd_qabs.annobin_ctx_mpd_qnext_plus.start.annobin_ctx_mpd_qnext_plus.endctx_mpd_qnext_plus.annobin_ctx_mpd_qexp.start.annobin_ctx_mpd_qexp.endctx_mpd_qexp.annobin_ctx_mpd_qminus.start.annobin_ctx_mpd_qminus.endctx_mpd_qminus.annobin_ctx_mpd_qlog10.start.annobin_ctx_mpd_qlog10.endctx_mpd_qlog10.annobin_ctx_mpd_qround_to_intx.start.annobin_ctx_mpd_qround_to_intx.endctx_mpd_qround_to_intx.annobin_ctx_mpd_qreduce.start.annobin_ctx_mpd_qreduce.endctx_mpd_qreduce.annobin_ctx_mpd_qnext_minus.start.annobin_ctx_mpd_qnext_minus.endctx_mpd_qnext_minus.annobin_ctx_mpd_qinvert.start.annobin_ctx_mpd_qinvert.endctx_mpd_qinvert.annobin_ctx_mpd_qplus.start.annobin_ctx_mpd_qplus.endctx_mpd_qplus.annobin_ctx_mpd_qround_to_int.start.annobin_ctx_mpd_qround_to_int.endctx_mpd_qround_to_int.annobin_ctx_mpd_qsqrt.start.annobin_ctx_mpd_qsqrt.endctx_mpd_qsqrt.annobin_dec_richcompare.start.annobin_dec_richcompare.enddec_richcompareRational.annobin_nm_mpd_qrem.start.annobin_nm_mpd_qrem.endnm_mpd_qrem.annobin_nm_mpd_qdivint.start.annobin_nm_mpd_qdivint.endnm_mpd_qdivint.annobin_dec_format.start.annobin_dec_format.enddec_format.annobin_dec_mpd_compare_total.start.annobin_dec_mpd_compare_total.enddec_mpd_compare_totalkwlist.17883.annobin_dec_mpd_compare_total_mag.start.annobin_dec_mpd_compare_total_mag.enddec_mpd_compare_total_magkwlist.17894.annobin_nm_mpd_qdivmod.start.annobin_nm_mpd_qdivmod.endnm_mpd_qdivmod.annobin_nm_mpd_qpow.start.annobin_nm_mpd_qpow.endnm_mpd_qpow.annobin_dec_as_integer_ratio.start.annobin_dec_as_integer_ratio.enddec_as_integer_ratio_py_long_power_py_long_multiply_py_long_floor_divide.annobin_ctx_mpd_same_quantum.start.annobin_ctx_mpd_same_quantum.endctx_mpd_same_quantum.annobin_dec_mpd_qcopy_sign.start.annobin_dec_mpd_qcopy_sign.enddec_mpd_qcopy_signkwlist.17905.annobin_dec_mpd_qxor.start.annobin_dec_mpd_qxor.enddec_mpd_qxorkwlist.17952.annobin_dec_mpd_qmin.start.annobin_dec_mpd_qmin.enddec_mpd_qminkwlist.17709.annobin_dec_mpd_qmin_mag.start.annobin_dec_mpd_qmin_mag.enddec_mpd_qmin_magkwlist.17721.annobin_dec_mpd_qnext_toward.start.annobin_dec_mpd_qnext_toward.enddec_mpd_qnext_towardkwlist.17733.annobin_dec_mpd_qcompare_signal.start.annobin_dec_mpd_qcompare_signal.enddec_mpd_qcompare_signalkwlist.17673.annobin_dec_mpd_qmax_mag.start.annobin_dec_mpd_qmax_mag.enddec_mpd_qmax_magkwlist.17697.annobin_dec_mpd_qcompare.start.annobin_dec_mpd_qcompare.enddec_mpd_qcomparekwlist.17661.annobin_dec_mpd_qshift.start.annobin_dec_mpd_qshift.enddec_mpd_qshiftkwlist.17988.annobin_dec_mpd_qmax.start.annobin_dec_mpd_qmax.enddec_mpd_qmaxkwlist.17685.annobin_dec_mpd_qrotate.start.annobin_dec_mpd_qrotate.enddec_mpd_qrotatekwlist.17964.annobin_dec_mpd_qrem_near.start.annobin_dec_mpd_qrem_near.enddec_mpd_qrem_nearkwlist.17745.annobin_dec_mpd_qand.start.annobin_dec_mpd_qand.enddec_mpd_qandkwlist.17928.annobin_dec_mpd_qscaleb.start.annobin_dec_mpd_qscaleb.enddec_mpd_qscalebkwlist.17976.annobin_dec_mpd_qor.start.annobin_dec_mpd_qor.enddec_mpd_qorkwlist.17940.annobin_ctx_mpd_compare_total.start.annobin_ctx_mpd_compare_total.endctx_mpd_compare_total.annobin_ctx_mpd_compare_total_mag.start.annobin_ctx_mpd_compare_total_mag.endctx_mpd_compare_total_mag.annobin_dec_mpd_same_quantum.start.annobin_dec_mpd_same_quantum.enddec_mpd_same_quantumkwlist.17917.annobin_ctx_mpd_qfma.start.annobin_ctx_mpd_qfma.endctx_mpd_qfma.annobin_ctx_mpd_qcopy_sign.start.annobin_ctx_mpd_qcopy_sign.endctx_mpd_qcopy_sign.annobin_ctx_mpd_qmax.start.annobin_ctx_mpd_qmax.endctx_mpd_qmax.annobin_ctx_mpd_qshift.start.annobin_ctx_mpd_qshift.endctx_mpd_qshift.annobin_ctx_mpd_qmin_mag.start.annobin_ctx_mpd_qmin_mag.endctx_mpd_qmin_mag.annobin_ctx_mpd_qand.start.annobin_ctx_mpd_qand.endctx_mpd_qand.annobin_ctx_mpd_qquantize.start.annobin_ctx_mpd_qquantize.endctx_mpd_qquantize.annobin_ctx_mpd_qmin.start.annobin_ctx_mpd_qmin.endctx_mpd_qmin.annobin_ctx_mpd_qmax_mag.start.annobin_ctx_mpd_qmax_mag.endctx_mpd_qmax_mag.annobin_ctx_mpd_qnext_toward.start.annobin_ctx_mpd_qnext_toward.endctx_mpd_qnext_toward.annobin_ctx_mpd_qdivint.start.annobin_ctx_mpd_qdivint.endctx_mpd_qdivint.annobin_ctx_mpd_qscaleb.start.annobin_ctx_mpd_qscaleb.endctx_mpd_qscaleb.annobin_ctx_mpd_qsub.start.annobin_ctx_mpd_qsub.endctx_mpd_qsub.annobin_ctx_mpd_qmul.start.annobin_ctx_mpd_qmul.endctx_mpd_qmul.annobin_ctx_mpd_qor.start.annobin_ctx_mpd_qor.endctx_mpd_qor.annobin_ctx_mpd_qrem.start.annobin_ctx_mpd_qrem.endctx_mpd_qrem.annobin_ctx_mpd_qdiv.start.annobin_ctx_mpd_qdiv.endctx_mpd_qdiv.annobin_ctx_mpd_qcompare.start.annobin_ctx_mpd_qcompare.endctx_mpd_qcompare.annobin_ctx_mpd_qcompare_signal.start.annobin_ctx_mpd_qcompare_signal.endctx_mpd_qcompare_signal.annobin_ctx_mpd_qrem_near.start.annobin_ctx_mpd_qrem_near.endctx_mpd_qrem_near.annobin_ctx_mpd_qxor.start.annobin_ctx_mpd_qxor.endctx_mpd_qxor.annobin_ctx_mpd_qrotate.start.annobin_ctx_mpd_qrotate.endctx_mpd_qrotate.annobin_ctx_mpd_qadd.start.annobin_ctx_mpd_qadd.endctx_mpd_qadd.annobin_nm_mpd_qdiv.start.annobin_nm_mpd_qdiv.endnm_mpd_qdiv.annobin_nm_mpd_qadd.start.annobin_nm_mpd_qadd.endnm_mpd_qadd.annobin_nm_mpd_qsub.start.annobin_nm_mpd_qsub.endnm_mpd_qsub.annobin_nm_mpd_qmul.start.annobin_nm_mpd_qmul.endnm_mpd_qmul.annobin_dec_mpd_class.start.annobin_dec_mpd_class.enddec_mpd_classkwlist.17865.annobin_PyInit__decimal.start.annobin_PyInit__decimal.endPyDecSignalDictMixin_Type_decimal_moduleDecimalExceptionssize_constantsint_constantsdoc__decimal_decimal_methodsdoc_getcontextdoc_setcontextdoc_localcontextcontext_methodsdoc_ctx_absdoc_ctx_expdoc_ctx_lndoc_ctx_log10doc_ctx_minusdoc_ctx_next_minusdoc_ctx_next_plusdoc_ctx_normalizedoc_ctx_plusdoc_ctx_to_integraldoc_ctx_to_integral_exactdoc_ctx_to_integral_valuedoc_ctx_sqrtdoc_ctx_adddoc_ctx_comparedoc_ctx_compare_signaldoc_ctx_dividedoc_ctx_divide_intdoc_ctx_divmoddoc_ctx_maxdoc_ctx_max_magdoc_ctx_mindoc_ctx_min_magdoc_ctx_multiplydoc_ctx_next_towarddoc_ctx_quantizedoc_ctx_remainderdoc_ctx_remainder_neardoc_ctx_subtractdoc_ctx_powerdoc_ctx_fmadoc_ctx_Etinydoc_ctx_Etopdoc_ctx_radixdoc_ctx_is_canonicaldoc_ctx_is_finitedoc_ctx_is_infinitedoc_ctx_is_nandoc_ctx_is_normaldoc_ctx_is_qnandoc_ctx_is_signeddoc_ctx_is_snandoc_ctx_is_subnormaldoc_ctx_is_zerodoc_ctx_canonicaldoc_ctx_copy_absdoc_ctx_copy_decimaldoc_ctx_copy_negatedoc_ctx_logbdoc_ctx_logical_invertdoc_ctx_number_classdoc_ctx_to_sci_stringdoc_ctx_to_eng_stringdoc_ctx_compare_totaldoc_ctx_compare_total_magdoc_ctx_copy_signdoc_ctx_logical_anddoc_ctx_logical_ordoc_ctx_logical_xordoc_ctx_rotatedoc_ctx_same_quantumdoc_ctx_scalebdoc_ctx_shiftdoc_ctx_clear_flagsdoc_ctx_clear_trapsdoc_ctx_copydoc_ctx_create_decimaldoc_ctx_create_decimal_from_floatdec_methodsdoc_expdoc_lndoc_log10doc_next_minusdoc_next_plusdoc_normalizedoc_to_integraldoc_to_integral_exactdoc_to_integral_valuedoc_sqrtdoc_comparedoc_compare_signaldoc_maxdoc_max_magdoc_mindoc_min_magdoc_next_towarddoc_quantizedoc_remainder_neardoc_fmadoc_is_canonicaldoc_is_finitedoc_is_infinitedoc_is_nandoc_is_qnandoc_is_snandoc_is_signeddoc_is_zerodoc_is_normaldoc_is_subnormaldoc_adjusteddoc_canonicaldoc_conjugatedoc_radixdoc_copy_absdoc_copy_negatedoc_logbdoc_logical_invertdoc_number_classdoc_to_eng_stringdoc_compare_totaldoc_compare_total_magdoc_copy_signdoc_same_quantumdoc_logical_anddoc_logical_ordoc_logical_xordoc_rotatedoc_scalebdoc_shiftdoc_from_floatdoc_as_tupledoc_as_integer_ratiodec_number_methodsdec_getsetsctxmanager_methodscontext_getsetssignaldict_as_mappingsignaldict_methodsdoc_contextdoc_decimal.annobin_basearith.c.annobin_basearith.c_end.annobin_basearith.c.hot.annobin_basearith.c_end.hot.annobin_basearith.c.unlikely.annobin_basearith.c_end.unlikely.annobin_basearith.c.startup.annobin_basearith.c_end.startup.annobin_basearith.c.exit.annobin_basearith.c_end.exit.annobin__mpd_baseadd.start.annobin__mpd_baseadd.end.annobin__mpd_baseaddto.start.annobin__mpd_baseaddto.end.annobin__mpd_shortadd.start.annobin__mpd_shortadd.end.annobin__mpd_baseincr.start.annobin__mpd_baseincr.end.annobin__mpd_basesub.start.annobin__mpd_basesub.end.annobin__mpd_basesubfrom.start.annobin__mpd_basesubfrom.end.annobin__mpd_shortmul.start.annobin__mpd_shortmul.end.annobin__mpd_basemul.start.annobin__mpd_basemul.end.annobin__mpd_shortdiv.start.annobin__mpd_shortdiv.end.annobin__mpd_basedivmod.start.annobin__mpd_basedivmod.end.annobin__mpd_baseshiftl.start.annobin__mpd_baseshiftl.end.annobin__mpd_baseshiftr.start.annobin__mpd_baseshiftr.end.annobin__mpd_shortadd_b.start.annobin__mpd_shortadd_b.end.annobin__mpd_shortmul_c.start.annobin__mpd_shortmul_c.end.annobin__mpd_shortmul_b.start.annobin__mpd_shortmul_b.end.annobin__mpd_shortdiv_b.start.annobin__mpd_shortdiv_b.end.annobin_constants.c.annobin_constants.c_end.annobin_constants.c.hot.annobin_constants.c_end.hot.annobin_constants.c.unlikely.annobin_constants.c_end.unlikely.annobin_constants.c.startup.annobin_constants.c_end.startup.annobin_constants.c.exit.annobin_constants.c_end.exit.annobin_context.c.annobin_context.c_end.annobin_context.c.hot.annobin_context.c_end.hot.annobin_context.c.unlikely.annobin_context.c_end.unlikely.annobin_context.c.startup.annobin_context.c_end.startup.annobin_context.c.exit.annobin_context.c_end.exit.annobin_mpd_dflt_traphandler.start.annobin_mpd_dflt_traphandler.end.annobin_mpd_setminalloc.start.annobin_mpd_setminalloc.endminalloc_is_set.5496.annobin_mpd_init.start.annobin_mpd_init.end.annobin_mpd_maxcontext.start.annobin_mpd_maxcontext.end.annobin_mpd_defaultcontext.start.annobin_mpd_defaultcontext.end.annobin_mpd_basiccontext.start.annobin_mpd_basiccontext.end.annobin_mpd_ieee_context.start.annobin_mpd_ieee_context.end.annobin_mpd_getprec.start.annobin_mpd_getprec.end.annobin_mpd_getemax.start.annobin_mpd_getemax.end.annobin_mpd_getemin.start.annobin_mpd_getemin.end.annobin_mpd_getround.start.annobin_mpd_getround.end.annobin_mpd_gettraps.start.annobin_mpd_gettraps.end.annobin_mpd_getstatus.start.annobin_mpd_getstatus.end.annobin_mpd_getclamp.start.annobin_mpd_getclamp.end.annobin_mpd_getcr.start.annobin_mpd_getcr.end.annobin_mpd_qsetprec.start.annobin_mpd_qsetprec.end.annobin_mpd_qsetemax.start.annobin_mpd_qsetemax.end.annobin_mpd_qsetemin.start.annobin_mpd_qsetemin.end.annobin_mpd_qsetround.start.annobin_mpd_qsetround.end.annobin_mpd_qsettraps.start.annobin_mpd_qsettraps.end.annobin_mpd_qsetstatus.start.annobin_mpd_qsetstatus.end.annobin_mpd_qsetclamp.start.annobin_mpd_qsetclamp.end.annobin_mpd_qsetcr.start.annobin_mpd_qsetcr.end.annobin_mpd_addstatus_raise.start.annobin_mpd_addstatus_raise.end.annobin_convolute.c.annobin_convolute.c_end.annobin_convolute.c.hot.annobin_convolute.c_end.hot.annobin_convolute.c.unlikely.annobin_convolute.c_end.unlikely.annobin_convolute.c.startup.annobin_convolute.c_end.startup.annobin_convolute.c.exit.annobin_convolute.c_end.exit.annobin_fnt_convolute.start.annobin_fnt_convolute.end.annobin_fnt_autoconvolute.start.annobin_fnt_autoconvolute.end.annobin_crt.c.annobin_crt.c_end.annobin_crt.c.hot.annobin_crt.c_end.hot.annobin_crt.c.unlikely.annobin_crt.c_end.unlikely.annobin_crt.c.startup.annobin_crt.c_end.startup.annobin_crt.c.exit.annobin_crt.c_end.exit.annobin_crt3.start.annobin_crt3.end.annobin_difradix2.c.annobin_difradix2.c_end.annobin_difradix2.c.hot.annobin_difradix2.c_end.hot.annobin_difradix2.c.unlikely.annobin_difradix2.c_end.unlikely.annobin_difradix2.c.startup.annobin_difradix2.c_end.startup.annobin_difradix2.c.exit.annobin_difradix2.c_end.exit.annobin_fnt_dif2.start.annobin_fnt_dif2.end.annobin_fnt.c.annobin_fnt.c_end.annobin_fnt.c.hot.annobin_fnt.c_end.hot.annobin_fnt.c.unlikely.annobin_fnt.c_end.unlikely.annobin_fnt.c.startup.annobin_fnt.c_end.startup.annobin_fnt.c.exit.annobin_fnt.c_end.exit.annobin_std_fnt.start.annobin_std_fnt.end.annobin_std_inv_fnt.start.annobin_std_inv_fnt.end.annobin_fourstep.c.annobin_fourstep.c_end.annobin_fourstep.c.hot.annobin_fourstep.c_end.hot.annobin_fourstep.c.unlikely.annobin_fourstep.c_end.unlikely.annobin_fourstep.c.startup.annobin_fourstep.c_end.startup.annobin_fourstep.c.exit.annobin_fourstep.c_end.exit.annobin_four_step_fnt.start.annobin_four_step_fnt.end.annobin_inv_four_step_fnt.start.annobin_inv_four_step_fnt.end.annobin_io.c.annobin_io.c_end.annobin_io.c.hot.annobin_io.c_end.hot.annobin_io.c.unlikely.annobin_io.c_end.unlikely.annobin_io.c.startup.annobin_io.c_end.startup.annobin_io.c.exit.annobin_io.c_end.exit.annobin_scan_payload.start.annobin_scan_payload.endscan_payload.annobin__mpd_add_sep_dot.start.annobin__mpd_add_sep_dot.end_mpd_add_sep_dot.annobin__mpd_to_string.start.annobin__mpd_to_string.end_mpd_to_string_mpd_to_string.cold.1.annobin_mpd_qset_string.start.annobin_mpd_qset_string.end.annobin_mpd_qset_string_exact.start.annobin_mpd_qset_string_exact.end.annobin_mpd_to_sci.start.annobin_mpd_to_sci.end.annobin_mpd_to_eng.start.annobin_mpd_to_eng.end.annobin_mpd_to_sci_size.start.annobin_mpd_to_sci_size.end.annobin_mpd_to_eng_size.start.annobin_mpd_to_eng_size.end.annobin_mpd_validate_lconv.start.annobin_mpd_validate_lconv.end.annobin_mpd_parse_fmt_str.start.annobin_mpd_parse_fmt_str.end.annobin_mpd_qformat_spec.start.annobin_mpd_qformat_spec.end.annobin_mpd_qformat.start.annobin_mpd_qformat.end.annobin_mpd_snprint_flags.start.annobin_mpd_snprint_flags.endmpd_flag_string.annobin_mpd_lsnprint_flags.start.annobin_mpd_lsnprint_flags.end.annobin_mpd_lsnprint_signals.start.annobin_mpd_lsnprint_signals.endmpd_signal_string.annobin_mpd_fprint.start.annobin_mpd_fprint.end.annobin_mpd_print.start.annobin_mpd_print.end.annobin_mpalloc.c.annobin_mpalloc.c_end.annobin_mpalloc.c.hot.annobin_mpalloc.c_end.hot.annobin_mpalloc.c.unlikely.annobin_mpalloc.c_end.unlikely.annobin_mpalloc.c.startup.annobin_mpalloc.c_end.startup.annobin_mpalloc.c.exit.annobin_mpalloc.c_end.exit.annobin_mpd_callocfunc_em.start.annobin_mpd_callocfunc_em.end.annobin_mpd_alloc.start.annobin_mpd_alloc.end.annobin_mpd_calloc.start.annobin_mpd_calloc.end.annobin_mpd_realloc.start.annobin_mpd_realloc.end.annobin_mpd_sh_alloc.start.annobin_mpd_sh_alloc.end.annobin_mpd_qnew_size.start.annobin_mpd_qnew_size.end.annobin_mpd_qnew.start.annobin_mpd_qnew.end.annobin_mpd_new.start.annobin_mpd_new.end.annobin_mpd_switch_to_dyn.start.annobin_mpd_switch_to_dyn.end.annobin_mpd_switch_to_dyn_zero.start.annobin_mpd_switch_to_dyn_zero.end.annobin_mpd_realloc_dyn.start.annobin_mpd_realloc_dyn.end.annobin_mpd_switch_to_dyn_cxx.start.annobin_mpd_switch_to_dyn_cxx.end.annobin_mpd_realloc_dyn_cxx.start.annobin_mpd_realloc_dyn_cxx.end.annobin_mpdecimal.c.annobin_mpdecimal.c_end.annobin_mpdecimal.c.hot.annobin_mpdecimal.c_end.hot.annobin_mpdecimal.c.unlikely.annobin_mpdecimal.c_end.unlikely.annobin_mpdecimal.c.startup.annobin_mpdecimal.c_end.startup.annobin_mpdecimal.c.exit.annobin_mpdecimal.c_end.exit.annobin__mpd_isint.start.annobin__mpd_isint.end_mpd_isint.annobin__karatsuba_rec.start.annobin__karatsuba_rec.end_karatsuba_rec.annobin_add_size_t.part.4.start.annobin_add_size_t.part.4.endadd_size_t.part.4.annobin__mpd_fntmul.start.annobin__mpd_fntmul.end_mpd_fntmul.annobin__karatsuba_rec_fnt.start.annobin__karatsuba_rec_fnt.end_karatsuba_rec_fnt.annobin_mul_size_t.part.5.start.annobin_mul_size_t.part.5.endmul_size_t.part.5.annobin__kmul_worksize.part.6.start.annobin__kmul_worksize.part.6.end_kmul_worksize.part.6.annobin__mpd_basecmp.start.annobin__mpd_basecmp.end_mpd_basecmp.annobin__mpd_cmp_same_adjexp.start.annobin__mpd_cmp_same_adjexp.end_mpd_cmp_same_adjexp.annobin__mpd_cmp_abs.start.annobin__mpd_cmp_abs.end_mpd_cmp_abs.annobin__mpd_cmp.start.annobin__mpd_cmp.end_mpd_cmp.annobin__mpd_kmul.start.annobin__mpd_kmul.end_mpd_kmul.annobin__mpd_kmul_fnt.start.annobin__mpd_kmul_fnt.end_mpd_kmul_fnt.annobin__ssettriple.constprop.42.start.annobin__ssettriple.constprop.42.end_ssettriple.constprop.42.annobin__settriple.start.annobin__settriple.end_settriple.annobin__mpd_get_rnd.start.annobin__mpd_get_rnd.end_mpd_get_rnd.annobin_mpd_version.start.annobin_mpd_version.end.annobin_mpd_word_digits.start.annobin_mpd_word_digits.end.annobin_mpd_adjexp.start.annobin_mpd_adjexp.end.annobin_mpd_etiny.start.annobin_mpd_etiny.end.annobin_mpd_etop.start.annobin_mpd_etop.end.annobin_mpd_msword.start.annobin_mpd_msword.end.annobin_mpd_msd.start.annobin_mpd_msd.end.annobin_mpd_lsd.start.annobin_mpd_lsd.end.annobin_mpd_digits_to_size.start.annobin_mpd_digits_to_size.end.annobin_mpd_exp_digits.start.annobin_mpd_exp_digits.end.annobin_mpd_iscanonical.start.annobin_mpd_iscanonical.end.annobin_mpd_isfinite.start.annobin_mpd_isfinite.end.annobin_mpd_isinfinite.start.annobin_mpd_isinfinite.end.annobin_mpd_isnan.start.annobin_mpd_isnan.end.annobin_mpd_isnegative.start.annobin_mpd_isnegative.end.annobin_mpd_ispositive.start.annobin_mpd_ispositive.end.annobin_mpd_isqnan.start.annobin_mpd_isqnan.end.annobin_mpd_issigned.start.annobin_mpd_issigned.end.annobin_mpd_issnan.start.annobin_mpd_issnan.end.annobin_mpd_isspecial.start.annobin_mpd_isspecial.end.annobin_mpd_iszero.start.annobin_mpd_iszero.end.annobin_mpd_iszerocoeff.start.annobin_mpd_iszerocoeff.end.annobin_mpd_isnormal.start.annobin_mpd_isnormal.end.annobin_mpd_issubnormal.start.annobin_mpd_issubnormal.end.annobin_mpd_isoddword.start.annobin_mpd_isoddword.end.annobin_mpd_isoddcoeff.start.annobin_mpd_isoddcoeff.end.annobin_mpd_sign.start.annobin_mpd_sign.end.annobin_mpd_arith_sign.start.annobin_mpd_arith_sign.end.annobin_mpd_radix.start.annobin_mpd_radix.end.annobin_mpd_isdynamic.start.annobin_mpd_isdynamic.end.annobin_mpd_isstatic.start.annobin_mpd_isstatic.end.annobin_mpd_isdynamic_data.start.annobin_mpd_isdynamic_data.end.annobin_mpd_isstatic_data.start.annobin_mpd_isstatic_data.end.annobin_mpd_isshared_data.start.annobin_mpd_isshared_data.end.annobin_mpd_isconst_data.start.annobin_mpd_isconst_data.end.annobin_mpd_uint_zero.start.annobin_mpd_uint_zero.end.annobin_mpd_del.start.annobin_mpd_del.end.annobin_mpd_qresize.start.annobin_mpd_qresize.end.annobin_mpd_qresize_zero.start.annobin_mpd_qresize_zero.end.annobin_mpd_minalloc.start.annobin_mpd_minalloc.end.annobin_mpd_resize.start.annobin_mpd_resize.end.annobin_mpd_resize_zero.start.annobin_mpd_resize_zero.end.annobin_mpd_setdigits.start.annobin_mpd_setdigits.end.annobin__mpd_fix_nan.isra.18.start.annobin__mpd_fix_nan.isra.18.end_mpd_fix_nan.isra.18.annobin__mpd_cap.isra.20.start.annobin__mpd_cap.isra.20.end_mpd_cap.isra.20.annobin_mpd_set_sign.start.annobin_mpd_set_sign.end.annobin_mpd_signcpy.start.annobin_mpd_signcpy.end.annobin_mpd_set_infinity.start.annobin_mpd_set_infinity.end.annobin_mpd_set_qnan.start.annobin_mpd_set_qnan.end.annobin_mpd_set_snan.start.annobin_mpd_set_snan.end.annobin_mpd_set_negative.start.annobin_mpd_set_negative.end.annobin_mpd_set_positive.start.annobin_mpd_set_positive.end.annobin_mpd_set_dynamic.start.annobin_mpd_set_dynamic.end.annobin_mpd_set_static.start.annobin_mpd_set_static.end.annobin_mpd_set_dynamic_data.start.annobin_mpd_set_dynamic_data.end.annobin_mpd_set_static_data.start.annobin_mpd_set_static_data.end.annobin_mpd_set_shared_data.start.annobin_mpd_set_shared_data.end.annobin_mpd_set_const_data.start.annobin_mpd_set_const_data.end.annobin_mpd_clear_flags.start.annobin_mpd_clear_flags.end.annobin_mpd_set_flags.start.annobin_mpd_set_flags.end.annobin_mpd_copy_flags.start.annobin_mpd_copy_flags.end.annobin_mpd_zerocoeff.start.annobin_mpd_zerocoeff.end.annobin__mpd_qget_uint.start.annobin__mpd_qget_uint.end_mpd_qget_uint.annobin_mpd_qmaxcoeff.start.annobin_mpd_qmaxcoeff.end.annobin_mpd_trail_zeros.start.annobin_mpd_trail_zeros.end.annobin_mpd_isinteger.start.annobin_mpd_isinteger.end.annobin_mpd_isodd.start.annobin_mpd_isodd.end.annobin_mpd_iseven.start.annobin_mpd_iseven.end.annobin_mpd_setspecial.start.annobin_mpd_setspecial.end.annobin_mpd_seterror.start.annobin_mpd_seterror.end.annobin__mpd_qaddsub_inf.start.annobin__mpd_qaddsub_inf.end_mpd_qaddsub_inf.annobin__mpd_qmul_inf.start.annobin__mpd_qmul_inf.end_mpd_qmul_inf.annobin_mpd_qget_uint.start.annobin_mpd_qget_uint.end.annobin_mpd_qabs_uint.start.annobin_mpd_qabs_uint.end.annobin_mpd_qget_ssize.start.annobin_mpd_qget_ssize.end.annobin_mpd_qget_u64.start.annobin_mpd_qget_u64.end.annobin_mpd_qget_i64.start.annobin_mpd_qget_i64.end.annobin_mpd_qget_u32.start.annobin_mpd_qget_u32.end.annobin_mpd_qget_i32.start.annobin_mpd_qget_i32.end.annobin_mpd_qcopy.start.annobin_mpd_qcopy.end.annobin_mpd_qcheck_nan.start.annobin_mpd_qcheck_nan.end.annobin_mpd_qcheck_nans.start.annobin_mpd_qcheck_nans.end.annobin__mpd_qmul.start.annobin__mpd_qmul.end.annobin_mpd_qcopy_cxx.start.annobin_mpd_qcopy_cxx.end.annobin_mpd_qncopy.start.annobin_mpd_qncopy.end.annobin_mpd_qcopy_abs.start.annobin_mpd_qcopy_abs.end.annobin_mpd_qcopy_negate.start.annobin_mpd_qcopy_negate.end.annobin_mpd_qcopy_sign.start.annobin_mpd_qcopy_sign.end.annobin_mpd_qcmp.start.annobin_mpd_qcmp.end.annobin_mpd_qcompare.start.annobin_mpd_qcompare.end.annobin_mpd_qcompare_signal.start.annobin_mpd_qcompare_signal.end.annobin_mpd_cmp_total.start.annobin_mpd_cmp_total.end.annobin_mpd_compare_total.start.annobin_mpd_compare_total.end.annobin_mpd_cmp_total_mag.start.annobin_mpd_cmp_total_mag.end.annobin_mpd_compare_total_mag.start.annobin_mpd_compare_total_mag.end.annobin_mpd_qshiftl.start.annobin_mpd_qshiftl.end.annobin__mpd_qaddsub.start.annobin__mpd_qaddsub.end_mpd_qaddsub.annobin__mpd_zeropad.isra.26.start.annobin__mpd_zeropad.isra.26.end_mpd_zeropad.isra.26.annobin_mpd_qshiftr_inplace.start.annobin_mpd_qshiftr_inplace.end.annobin__mpd_check_exp.start.annobin__mpd_check_exp.end_mpd_check_exp_mpd_check_exp.cold.45.annobin_mpd_qfinalize.start.annobin_mpd_qfinalize.end.annobin_mpd_qsset_ssize.start.annobin_mpd_qsset_ssize.end.annobin_mpd_qsset_i32.start.annobin_mpd_qsset_i32.end.annobin_mpd_qsset_i64.start.annobin_mpd_qsset_i64.end.annobin_mpd_qset_ssize.start.annobin_mpd_qset_ssize.end.annobin_mpd_qset_i32.start.annobin_mpd_qset_i32.end.annobin_mpd_qset_i64.start.annobin_mpd_qset_i64.end.annobin_mpd_qset_i64_exact.start.annobin_mpd_qset_i64_exact.end.annobin_mpd_qsset_uint.start.annobin_mpd_qsset_uint.end.annobin_mpd_qsset_u64.start.annobin_mpd_qsset_u64.end.annobin_mpd_qsset_u32.start.annobin_mpd_qsset_u32.end.annobin_mpd_qset_uint.start.annobin_mpd_qset_uint.end.annobin_mpd_qset_u64.start.annobin_mpd_qset_u64.end.annobin_mpd_qset_u32.start.annobin_mpd_qset_u32.end.annobin_mpd_qset_u64_exact.start.annobin_mpd_qset_u64_exact.end.annobin__mpd_qmul_exact.start.annobin__mpd_qmul_exact.end_mpd_qmul_exact.annobin_mpd_qshiftr.start.annobin_mpd_qshiftr.end.annobin__mpd_qrescale.start.annobin__mpd_qrescale.end_mpd_qrescale.annobin__mpd_qround_to_integral.start.annobin__mpd_qround_to_integral.end_mpd_qround_to_integral.annobin_mpd_qand.start.annobin_mpd_qand.end.annobin_mpd_class.start.annobin_mpd_class.end.annobin_mpd_qinvert.start.annobin_mpd_qinvert.end.annobin_mpd_qlogb.start.annobin_mpd_qlogb.end.annobin_mpd_qor.start.annobin_mpd_qor.end.annobin_mpd_qrotate.start.annobin_mpd_qrotate.end.annobin_mpd_qscaleb.start.annobin_mpd_qscaleb.end.annobin_mpd_qshiftn.start.annobin_mpd_qshiftn.end.annobin_mpd_qshift.start.annobin_mpd_qshift.end.annobin_mpd_qxor.start.annobin_mpd_qxor.end.annobin_mpd_qadd.start.annobin_mpd_qadd.end.annobin__mpd_qadd_exact.start.annobin__mpd_qadd_exact.end_mpd_qadd_exact.annobin_mpd_qsub.start.annobin_mpd_qsub.end.annobin__mpd_qsub_exact.start.annobin__mpd_qsub_exact.end_mpd_qsub_exact.annobin__mpd_qreciprocal.start.annobin__mpd_qreciprocal.end_mpd_qreciprocal.annobin__lower_bound_zeta.start.annobin__lower_bound_zeta.end_lower_bound_zeta.annobin__mpd_qinvroot.isra.33.constprop.44.start.annobin__mpd_qinvroot.isra.33.constprop.44.end_mpd_qinvroot.isra.33.constprop.44.annobin_mpd_qadd_ssize.start.annobin_mpd_qadd_ssize.end.annobin_mpd_qadd_uint.start.annobin_mpd_qadd_uint.end.annobin_mpd_qsub_ssize.start.annobin_mpd_qsub_ssize.end.annobin_mpd_qsub_uint.start.annobin_mpd_qsub_uint.end.annobin_mpd_qadd_i32.start.annobin_mpd_qadd_i32.end.annobin_mpd_qadd_u32.start.annobin_mpd_qadd_u32.end.annobin_mpd_qadd_i64.start.annobin_mpd_qadd_i64.end.annobin_mpd_qadd_u64.start.annobin_mpd_qadd_u64.end.annobin_mpd_qsub_i32.start.annobin_mpd_qsub_i32.end.annobin_mpd_qsub_u32.start.annobin_mpd_qsub_u32.end.annobin_mpd_qsub_i64.start.annobin_mpd_qsub_i64.end.annobin_mpd_qsub_u64.start.annobin_mpd_qsub_u64.end.annobin_mpd_qfma.start.annobin_mpd_qfma.end.annobin_mpd_qmax.start.annobin_mpd_qmax.end.annobin_mpd_qmax_mag.start.annobin_mpd_qmax_mag.end.annobin_mpd_qmin.start.annobin_mpd_qmin.end.annobin_mpd_qmin_mag.start.annobin_mpd_qmin_mag.end.annobin_mpd_qmul.start.annobin_mpd_qmul.end.annobin_mpd_qmul_ssize.start.annobin_mpd_qmul_ssize.end.annobin_mpd_qmul_uint.start.annobin_mpd_qmul_uint.end.annobin_mpd_qmul_i32.start.annobin_mpd_qmul_i32.end.annobin_mpd_qmul_u32.start.annobin_mpd_qmul_u32.end.annobin_mpd_qmul_i64.start.annobin_mpd_qmul_i64.end.annobin_mpd_qmul_u64.start.annobin_mpd_qmul_u64.end.annobin_mpd_qminus.start.annobin_mpd_qminus.end.annobin_mpd_qplus.start.annobin_mpd_qplus.end.annobin_mpd_qabs.start.annobin_mpd_qabs.end.annobin_mpd_qnext_minus.start.annobin_mpd_qnext_minus.end.annobin_mpd_qnext_plus.start.annobin_mpd_qnext_plus.end.annobin_mpd_qnext_toward.start.annobin_mpd_qnext_toward.end.annobin_mpd_qquantize.start.annobin_mpd_qquantize.end.annobin_mpd_qreduce.start.annobin_mpd_qreduce.end.annobin_mpd_qrescale.start.annobin_mpd_qrescale.end.annobin_mpd_qrescale_fmt.start.annobin_mpd_qrescale_fmt.end.annobin_mpd_qround_to_intx.start.annobin_mpd_qround_to_intx.end.annobin_mpd_qround_to_int.start.annobin_mpd_qround_to_int.end.annobin_mpd_qtrunc.start.annobin_mpd_qtrunc.end.annobin__mpd_base_ndivmod.start.annobin__mpd_base_ndivmod.end_mpd_base_ndivmodminus_one.annobin__mpd_qdiv.start.annobin__mpd_qdiv.end.annobin_mpd_qdiv.start.annobin_mpd_qdiv.end.annobin_mpd_qdiv_ssize.start.annobin_mpd_qdiv_ssize.end.annobin_mpd_qdiv_i32.start.annobin_mpd_qdiv_i32.end.annobin_mpd_qdiv_i64.start.annobin_mpd_qdiv_i64.end.annobin_mpd_qdiv_uint.start.annobin_mpd_qdiv_uint.end.annobin_mpd_qdiv_u32.start.annobin_mpd_qdiv_u32.end.annobin_mpd_qdiv_u64.start.annobin_mpd_qdiv_u64.end.annobin__mpd_qexp.start.annobin__mpd_qexp.end.annobin_mpd_qexp.start.annobin_mpd_qexp.end.annobin_mpd_qln10.start.annobin_mpd_qln10.end_mpd_ln10.annobin__mpd_qln.isra.34.start.annobin__mpd_qln.isra.34.end_mpd_qln.isra.34lnapprox.annobin_mpd_qln.start.annobin_mpd_qln.end.annobin__mpd_qpow_real.isra.35.start.annobin__mpd_qpow_real.isra.35.end_mpd_qpow_real.isra.35.annobin__mpd_qlog10.start.annobin__mpd_qlog10.end.annobin_mpd_qlog10.start.annobin_mpd_qlog10.end.annobin__mpd_qdivmod.isra.36.start.annobin__mpd_qdivmod.isra.36.end_mpd_qdivmod.isra.36.annobin_mpd_qdivmod.start.annobin_mpd_qdivmod.endmpd_qdivmod.cold.46.annobin_mpd_qdivint.start.annobin_mpd_qdivint.endmpd_qdivint.cold.47.annobin__mpd_qpow_int.start.annobin__mpd_qpow_int.end_mpd_qpow_int.annobin_mpd_qpow.start.annobin_mpd_qpow.end.annobin_mpd_qrem.start.annobin_mpd_qrem.endmpd_qrem.cold.48.annobin_mpd_qpowmod.start.annobin_mpd_qpowmod.end.annobin_mpd_qrem_near.start.annobin_mpd_qrem_near.endmpd_qrem_near.cold.49.annobin__mpd_qsqrt.start.annobin__mpd_qsqrt.end.annobin_mpd_qfloor.start.annobin_mpd_qfloor.end.annobin_mpd_qceil.start.annobin_mpd_qceil.end.annobin_mpd_same_quantum.start.annobin_mpd_same_quantum.end.annobin_mpd_qinvroot.start.annobin_mpd_qinvroot.end.annobin_mpd_qsqrt.start.annobin_mpd_qsqrt.end.annobin_mpd_sizeinbase.start.annobin_mpd_sizeinbase.end.annobin_mpd_qexport_u16.start.annobin_mpd_qexport_u16.end.annobin_mpd_qexport_u32.start.annobin_mpd_qexport_u32.end.annobin_mpd_qimport_u16.start.annobin_mpd_qimport_u16.end.annobin_mpd_qimport_u32.start.annobin_mpd_qimport_u32.endmpd_ln10_datadata_zerodata_one.annobin_numbertheory.c.annobin_numbertheory.c_end.annobin_numbertheory.c.hot.annobin_numbertheory.c_end.hot.annobin_numbertheory.c.unlikely.annobin_numbertheory.c_end.unlikely.annobin_numbertheory.c.startup.annobin_numbertheory.c_end.startup.annobin_numbertheory.c.exit.annobin_numbertheory.c_end.exit.annobin__mpd_getkernel.start.annobin__mpd_getkernel.end.annobin__mpd_init_fnt_params.start.annobin__mpd_init_fnt_params.end.annobin__mpd_init_w3table.start.annobin__mpd_init_w3table.end.annobin_sixstep.c.annobin_sixstep.c_end.annobin_sixstep.c.hot.annobin_sixstep.c_end.hot.annobin_sixstep.c.unlikely.annobin_sixstep.c_end.unlikely.annobin_sixstep.c.startup.annobin_sixstep.c_end.startup.annobin_sixstep.c.exit.annobin_sixstep.c_end.exit.annobin_six_step_fnt.start.annobin_six_step_fnt.end.annobin_inv_six_step_fnt.start.annobin_inv_six_step_fnt.end.annobin_transpose.c.annobin_transpose.c_end.annobin_transpose.c.hot.annobin_transpose.c_end.hot.annobin_transpose.c.unlikely.annobin_transpose.c_end.unlikely.annobin_transpose.c.startup.annobin_transpose.c_end.startup.annobin_transpose.c.exit.annobin_transpose.c_end.exit.annobin_swap_halfrows_pow2.start.annobin_swap_halfrows_pow2.endswap_halfrows_pow2.annobin_mul_size_t.part.0.start.annobin_mul_size_t.part.0.endmul_size_t.part.0.annobin_squaretrans_pow2.start.annobin_squaretrans_pow2.endsquaretrans_pow2.annobin_std_trans.start.annobin_std_trans.end.annobin_transpose_pow2.start.annobin_transpose_pow2.endtranspose_pow2.cold.1deregister_tm_clones__do_global_dtors_auxcompleted.7303__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END__mpd_qcopympd_lsnprint_signals_mpd_shortmul_cmpd_qadd_i64mpd_isoddcoeff_mpd_shortadd_bmpd_parse_fmt_strmpd_qimport_u16mpd_qresize_zerompd_set_positivempd_set_const_datampd_qset_string_exactmpd_qsub_u32mpd_qdiv_i64mpd_setminallocmpd_qsset_i32mpd_versionmpd_ispositivempd_set_infinitympd_resize_zerompd_set_dynamicmpd_lsnprint_flagsmpd_switch_to_dyn_cxxmpd_isconst_datampd_zerocoeffmpd_realloc_dynmpd_realloc_dyn_cxxmpd_callocmpd_qset_i64_exactfnt_convoluteinv_four_step_fntUH_P1P2mpd_qset_uintmpd_qexport_u16_mpd_baseshiftrmpd_basiccontextmpd_qshiftrmpd_isstatic_datampd_qsettrapsmpd_qinvrootmpd_qget_ssize_mpd_basedivmodmpd_newmpd_qsub_u64mpd_ieee_contextmpd_qabs_uintmpd_trail_zerosmpd_qadd_ssizempd_qset_i64mpd_qget_u64_mpd_baseincrmpd_seterror_mpd_init_w3table_finimpd_arith_signmpd_cmp_total_magmpd_qdiv_u64mpd_dflt_traphandlermpd_initmpd_qcopy_cxxmpd_switch_to_dynmpd_qmul_i32mpd_set_dynamic_datampd_qsetstatusfnt_dif2mpd_qln10_mpd_basesubmpd_snprint_flagsmpd_gettrapsmpd_reallocmpd_getprecmpd_qdiv_ssizempd_isinteger_mpd_shortdivmpd_pow10mpd_getroundmpd_qset_stringstd_inv_fnttranspose_pow2mpd_callocfuncmpd_clamp_stringmpd_qmul_i64mpd_qmul_u32mpd_qset_i32mpd_printmpd_qcmpmpd_etinympd_qadd_u64mpd_validate_lconvmpd_set_flagsfnt_autoconvoluteinv_six_step_fntmpd_qrescale_fmtmpd_getclampmpd_qfinalizempd_qmul_uint_mpd_basemulmpd_qsset_u64mpd_to_sci_sizempd_etopmpd_traphandlermpd_set_qnan_mpd_init_fnt_paramsmpd_isstaticmpd_getcrmpd_qnew_sizempd_qmaxcoeffmpd_qformat_spec__dso_handlempd_qtruncmprime_rdxmpd_qsset_ssizempd_set_negativempd_qcheck_nansmpd_qget_i32mpd_cmp_totalmpd_sizeinbase_mpd_shortmul_bmpd_qpowmodMPD_MINALLOCmpd_qadd_uintmpd_isoddword_mpd_getkernelmpd_qget_i64mpd_qdiv_u32mpd_getstatusmpd_reallocfuncmpd_to_eng_sizempd_qset_u64_mpd_baseaddmpd_set_staticmpd_qsset_u32mpd_set_shared_datampd_isodd_mpd_baseaddtompd_minallocmpd_qmul_u64mpd_set_signmpd_addstatus_raisempd_uint_zerompd_isevenmpd_lsdmpd_qmul_ssizempd_allocmpd_rootsmpd_qsub_uintmpd_isspecialmpd_qsetprecmpd_digits_to_sizempd_mallocfuncmpd_maxcontextmpd_copy_flagsmpd_qget_u32mpd_bitsmpd_qsub_i32mpd_qdiv_uintmpd_qceilmpd_switch_to_dyn_zerompd_qset_u32mpd_isshared_datampd_qsub_ssizempd_signcpympd_qshiftl_DYNAMICmpd_qfloormpd_qshiftnmpd_iszerocoeffmpd_sh_allocmpd_qsetclampmpd_signmpd_qadd_u32mpd_round_stringmpd_callocfunc_em_mpd_basesubfrommpd_set_static_datampd_qsset_uint_mpd_shortaddmpd_set_snanmpd_modulimpd_qncopy_mpd_shortmulmpd_fprintmpd_qsub_i64INV_P1P2_MOD_P3mpd_qformatmpd_qimport_u32mpd_msdmpd_exp_digitsstd_transmpd_defaultcontext__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_mpd_qadd_i32mpd_qsetemaxmpd_qseteminmpd_qcheck_nanmpd_qsset_i64mpd_qset_u64_exactmpd_qexport_u32mpd_clear_flagsmpd_qsetroundmpd_resizempd_qnewmpd_setdigitscrt3mpd_qdiv_i32mpd_setspecialmpd_isnegativeLH_P1P2mpd_qshiftr_inplacempd_qsetcrmpd_getemaxmpd_freempd_word_digitsmpd_mswordmpd_qset_ssizempd_isdynamic_datampd_qresizestd_fnt_mpd_shortdiv_b_mpd_baseshiftlmpd_geteminINV_P1_MOD_P2mpd_isdynamicmpd_delPyUnicode_FromFormat__strcat_chk@@GLIBC_2.3.4PyList_New_PyUnicode_Ready__snprintf_chk@@GLIBC_2.3.4PyDict_SetItemStringraise@@GLIBC_2.2.5free@@GLIBC_2.2.5PyDict_SizePyModule_AddIntConstantPyArg_ParseTupleAndKeywordsabort@@GLIBC_2.2.5__errno_location@@GLIBC_2.2.5_ITM_deregisterTMCloneTablePyFloat_TypePyTuple_TypePyList_AsTuple_Py_ascii_whitespacePyObject_CallMethodPyMem_FreePyUnicode_FromWideCharPyObject_GetAttrString_PyLong_Newlocaleconv@@GLIBC_2.2.5mbstowcs@@GLIBC_2.2.5PyUnicode_AsUTF8String_edata_Py_DeallocPyErr_NoMemoryPyErr_SetObject_Py_NotImplementedStructstrlen@@GLIBC_2.2.5__stack_chk_fail@@GLIBC_2.4PyExc_RuntimeErrorPyErr_SetStringPyObject_IsInstancesnprintf@@GLIBC_2.2.5PyExc_ValueErrorPyExc_TypeErrorPyObject_HashNotImplementedPyType_GenericNewmemset@@GLIBC_2.2.5PyMem_ReallocPyComplex_TypePyContextVar_Setfputc@@GLIBC_2.2.5PyObject_FreePyLong_FromSsize_tPyFloat_FromDoublePyType_ReadyPyLong_FromLongPyLong_AsSsize_t_PyLong_GCDPyErr_NewExceptioncalloc@@GLIBC_2.2.5PyErr_ClearPyContextVar_GetPyBool_FromLongPyExc_ArithmeticErrorPyContextVar_NewPyList_Appendstrcmp@@GLIBC_2.2.5PyExc_KeyErrorstrtoll@@GLIBC_2.2.5log10@@GLIBC_2.2.5__memcpy_chk@@GLIBC_2.3.4_Py_FalseStruct__gmon_start__PyObject_CallFunctionPyTuple_NewPyObject_GenericGetAttrPyExc_OverflowErrormemcpy@@GLIBC_2.14PyType_TypePy_BuildValuePyErr_OccurredPyModule_Create2_PyUnicode_IsWhitespacePyLong_AsLongPyImport_ImportModulePyObject_CallObjectPyObject_CallFunctionObjArgsPyDict_GetItemStringmalloc@@GLIBC_2.2.5PyUnicode_CompareWithASCIIStringPyUnicode_DecodeUTF8_Py_NoneStructPyExc_ZeroDivisionError_PyUnicode_ToDecimalDigitPyFloat_AsDoublePyObject_IsTruePyArg_ParseTuplePyUnicode_ComparePyList_Sizerealloc@@GLIBC_2.2.5_Py_TrueStruct__bss_start__printf_chk@@GLIBC_2.3.4PyDict_NewPyBaseObject_Typememmove@@GLIBC_2.2.5PyLong_FromUnsignedLongPyLong_Type_PyObject_NewPyUnicode_FromStringPyModule_AddStringConstantPyUnicode_InternFromStringPyModule_AddObjectPyDict_SetItemPyObject_GenericSetAttrPyExc_AttributeErrorPyType_IsSubtypePyUnicode_AsUTF8AndSizePyTuple_SizePyComplex_AsCComplexPyComplex_FromDoublesPyErr_Formatfwrite@@GLIBC_2.2.5__fprintf_chk@@GLIBC_2.3.4_ITM_registerTMCloneTablePyInit__decimalceil@@GLIBC_2.2.5PyList_GetItemPyMem_Malloc__cxa_finalize@@GLIBC_2.2.5PyUnicode_NewPyTuple_Pack__ctype_tolower_loc@@GLIBC_2.3__ctype_b_loc@@GLIBC_2.3PyDict_GetItemWithErrorstderr@@GLIBC_2.2.5PyFloat_FromString.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.note.gnu.property.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.comment.gnu.build.attributes88$.o``48  @((Ho Uod @nBYYH xccs0c0c@~pipi0ooj  ZZPkPke $$$ $$$$ % 0- elh H i#